XINJE

XG series PLC
User manual [Instruction]

WUXI XINJE ELECTRIC CO., LTD

Data No. PG02 20210810EN 3.7

e Basic explanation
Thank you for purchasing Xinje XG series medium-sized PLC.
This manual mainly introduces XG series medium-sized PLC instructions.
Please read this manual carefully before using and wire after understanding the content.
About software and programming instructions, please refer to related manuals.
Please hand this manual over to operation users.

e Notices for users
Only experienced operator can wire the plc. If any problem, please contact our technical
department.
The listed examples are used to help users to understand, so it may not act.
Please conform that PLC specifications and principles are suitable when connect PLC to
other products. Please conform safety of PLC and machines by yourself when use the PLC.
Machines may be damaged by PLC errors.

e Responsibility declaration
The manual content has been checked carefully, however, mistakes may happen.
We often check the manual and will correct the problems in subsequent version. Welcome to
offer advices to us.
Excuse us that we will not inform you if manual is changed.

e Contact information
If you have any problem about products, please contact the agent or Xinje company.
Tel: 400-885-0136
Fax: 0510-85111290
Address: No.816, Jianzhu West Road, Binhu District, Wuxi City, Jiangsu Province, China
Code: 214072

WUXI XINJE ELECTRIC CO., LTD. copyrights

Do not copy or use manual without written permission. Offenders should be responsible
for losses. Please keep all copyrights of our company including practical modules,
designed patents and copyrights mentioned in register.

July, 2018

o /

Catalog

1 PROGRAMMING SUMMARYootiitiieieie st eiee sttt ste et sne et steaneessessesseenesseenes 9
L1 PLC FEATURES .. tuvetettteteteetesesteteseseesesessesesssassesassasesessese e ssesessssesesessesessssesesessasesensesesensesessnsesensnsns 9
1-2 PROGRAMMING LANGUAGEcuevtitiriiatesesisteseseesesestasesessssesessssesessssessssesessssesessssesesessesessssesensnses 10

1Y o PRSP 10
R N (=14 1 11T o OO 1
1-3 PROGRAMMING MODEtuvvereseteseeasesesesesesessesessssessssssesessasessssesesessesessssesessssesessssesessssesessssesessnses 11

2 SOFT COMPONENT FUNCTION.coiiiiiieieiiese ettt sensseeneesnesnes 12
2-1 SUMMARY OF THE SOFT COMPONENTS .vvtuvitereeeteresisesesessesessssesessssesessssesessssesessssesessssesessssesesenss 12
2-2 STRUCTURE OF SOFT COMPONENTS ..v1.vtettsetereesesessssesesessesessssesessssesessssesessssesessssesessssesessssesessnss 15

2-2-1 SErUCTUIE OF IMIBIMOTY ...ttt e sttt e e tesreesreesreenteenaeeneeaneesraenreens 15

2-2-2 Structure of Bit SOft COMPONENLS.......ccuiiieiie e nre e 16
2-3 SOFT COMPONENTS LISTttiitiiiiesieesiee sttt ettt ettt me e nreen e e s e ene e aneenneenneeneenesnnesneas 17
2-4 INPUT/OUTPUT RELAYS (X, Y) ettt ittt itee st et ete sttt te ettt te e teeaeenaeantesnaestaenteenteesaesnaesnnes 21
2-5 AUXILIARY RELAY (M, HIM, SIM)...ciiiiice ettt ettt 22
2-6 STATUS RELAY (S, HS) ..ottt et et ne et e be e te e aeanaesnnas 23
e LY 1= (I N) S SR 24
2-8 COUNTER (C, HC, HSC) ..ottt st ettt be e e teanaesneas 27
2-9 DATAREGISTER (D, HD, SD, HSD).....cciiit ittt sttt 32

2-9-1 WOIrd CONSISE OF DIES.....ccveeieie e bbb 35

2-9-2 OFfSet @PPIICALIONeeieiicc e te et e e e e e e nreen 36
2-10 FLASH REGISTER (FD, SFD, FS) ...iiiii ittt ettt 36
2-10 CONSTANT . eteiteeeteet e tee sttt e b e e s bt e e et e e e e se e eh e e e bt e s Rt e b e e b e e s e e e R e e e Re e e Re e nR e e Rt e mn e eneeebeenb e e b e e neesnennnenreas 38
2-12 PROGRAMMING PRINCIPLEutitieittesttateaste et steesteebe e sssesseesbeesbeesbeenneasnesnsesneesbeenneeneesnesnnesnees 39

3 BASIC PROGRAM INSTRUCTIONSoot ettt 42
3-1 BASIC INSTRUCTIONS LIST ..ttt iteestt ettt ettt n ettt et e bbb nn e 42
3-2 [LD], [LDI], [OUTT coteiiietiiesistee ittt sttt ettt aene s s se e nnas 44
BB TANDI], [ANIT ottt e ettt e bt et n e st s et re e nene e enas 45
K @] = RN [) [TSRS STRPRSRPRN 46
3-5[LDP], [LDF], [ANDP], [ANDF], [ORP], [ORF]...iiiiteitiiiteiiisieiristeesiseese st 47
3-6 [LDD], [LDDI], [ANDD], [ANDDI], [ORD], [ORDI], [OUTD] ...ccecvsseririereerirreerieieresissensnenns 48
BT [ORBY ..ttt tetetti ettt sttt ettt ettt s ettt b et R et b R et R e bR bR R et R Re bt Re et te et et ne e ens 50
K Y V1= TSRS TT SRRSO 50
B9 [IMCS], [IMCRY] ettt sttt bt b s et et s ettt e e et s e s b ne e enas 51
K (O I TSRS R P PTOR USROS 52
BdL [PLS], [PLF] ittt b ettt b et b et b et b ne e neaere e eaas 53
B2 [SET] [RST] et teteiieteiri sttt ettt b bbb s et et e bbb s e e b s et b s e et eb e s snere e eaas 54
3-13[CNT],[CNT_D],[DCNT],[DCNT_D],[RST]FOR THE COUNTERSccieeieieriiierienienieaieseeseenees 55
3-14 [TMR], [TMR _A] FOR TIMERSeittttttttateaieiestestesieeteeseeeesaesaesbesbesbesseeseesaesaesbesaeaseaseansesassnesees 57
K L | =111) TSRS PTOTRTRPPRPRPPTON 58
3-16 [GROUPY, [GROUPET]coevitiuiietiitsistete sttt sttt ettt b e s b s s ebesenenas 59

3-17 PROGRAMMING NOTES ... ectuteuteutesteatestessesseeseessessessesteasesseassessessesbesbeasesseessessesseabesbesne e e ennennesnennes 59

4 APPLIED INSTRUCTIONScotiiee ettt sttt bbb 61
4-1 APPLIED INSTRUCTIONS LIST .ttt sttt sttt sttt sttt 61
4-2 READING METHOD OF APPLIED INSTRUCTIONS. ...cututettiteieresteseeresteseesesteseesesseseesesteseesesseseesessenens 65
4-3 PROGRAM FLOW INSTRUCTIONSeeuvetiiteieristesieresteseesesteseesesteseesesteseesestessesessessasessessasessensesessensns 68

e o o o[(o (N 04 4] o I [S 68
4-3-2 Call subroutine [CALL] and Subroutine return [SRET]......cccoviviiveiieienenie e 69
4-3-3 Flow [SET], [STI, [STLI, [STLE] oottt 71
4-3-4 [FOR] QNG [NEXTT 1reitiiteieitirieriete ettt sttt sttt sttt se et st sbesae e enesne e 76
4-3-5 [FEND] @Nd [ENDT ..ooviiieiiiieiie ettt st st st sne b e e enesne e 78
4-4 DATA COMPARE FUNCTION ..tuviutittiteeetesteseesesteseesesteseesesteseesesseseesestessesessessesessessesessessasessensesessensans 80
R I D 0o = L [SRS 80
4-4-2 Serial Compare [AND] ..ot e e re e 81
4-4-3 Parallel Compare [OR]coii ittt 83
4-5 DATA MOVE INSTRUCTIONSctuviiteisteesteeteessesssesseesieesseesseassessnssssssneesseesseessesssessnessesssesssesssesnsesnns 85
4-5-1 Data Compare [CMP, DCMP, QCMPT]ocoiiiiiiierie ettt 85
4-5-2 Data zone compare [ZCP, DZCP]oooi ittt e e 86
4-5-3 MOV [MOV, DMOV, QMOV] ..ottt sttt st sttt saesessesaesesnesnenens 87
4-5-4 Data block MOVe [BMOV]ooiiiiieece ettt 89
4-5-5 Data block MOVE [PMOV] ..ottt ettt be e 91
4-5-6 Fill Move [FMOV, DFMOV] ...cviiiiiiiieisie ettt sttt sttt saesneneas 92
4-5-7 Floating move [EMOV, EDMOV]ocoiiiiicicceeeee et 93
4-5-8 FlashROM Write [FWRT, DFWRT, QFWRT] ...eciiiiiiieiie et 95
4-5-9 Z0NE SEL [IMSET] tieiieieee ettt sttt et et e et e te e reeteenae e 96
4-5-10 ZONE FESEL [ZRST . utieiiiiiiie ittt te e te et e e ana e s te e te e beenteenaeaneas 97
4-5-11 Swap the high and 1ow byte [SWAPToooiiiiceeeee e 98
4-5-12 Exchange [XCH, DXCH] ...cooiiiiiiiiieisie ettt sttt st sne e 99
4-6 DATA OPERATION INSTRUCTIONSccutieutiitiesieesteesteesteeseassesssesteesbeebesssesseesseesbeesneesnesnnesnnesneenneens 101
4-6-1 Addition [ADD, DADD, QADD]ccviiiieiieiieiie ettt et 101
4-6-2 SUDLFACtION [SUBT ...cvieiicice ettt st et e st e e st e nraens 104
4-6-3 Multiplication [MUL, DMUL, QMUL]ccccoiiiiiiieice et 106
4-6-4 Division [DIV, DDIV, QDIV]...coviiiiiieieieie ettt sttt 107
4-6-5 Increment [INC, DINC, QINC] & Decrement [DEC, DDEC, QDEC]c..cccevvvvveviennnens 109
4-6-6 Mean [MEAN, DMEANT ..ottt sttt 111
4-6-7 Logic AND [WAND, DWAND], Logic OR[WOR, DWOR], Logic Exclusive OR [WXOR,
D@] = TSP URSURPRON 112
4-6-8 Logic converse [CML, DCML].....cooiiiiiiiie ettt 114
4-6-9 Negative [NEG, DNEGT]ccoieiiirieesie ittt sttt sttt 115
4-7 SHIFT INSTRUCTIONS ...cuttiuttiutesteenteeteesteestesteesteesteesseaaseaaseaseasseesbeasbeasbesseesbeesbeeabeeneannesnnesbeenneans 116
4-7-1 Arithmetic shift left [SHL,DSHL], Arithmetic shift right [SHR,DSHR]..........ccccccoenininns 116
4-7-2 Logic shift left [LSL], Logic shift right [LSR]coereiiiiieiiieeereneeeee e 118
4-7-3 Rotation shift left [ROL,DROL], Rotation shift right [ROR,DROR]..........cceoveirerernnnnnns 120
4-T-4 Bit SNt IEFE [SFTL] 1ovviveiiee ettt sttt sttt 121
4-7-5 Bit Shift FIght [SFETR]..cveiieiieiieeie ettt sttt 122

4-7-6 WOrd Shift 1ft [WSFL]....ecvieeeeieie s e ettt neennenne s 123

4-7-7 Word shift right [WSFR]cveiiiee et sre 124
4-8 DATA CONVERT w.vtittteteteteseatesteseaseste et teseese st e es s be b ese e ke be st e b e b e st e b e b et e be s b e st e be s be st e benbe st ebe st e ene 126
4-8-1 Single word integer converts to double word integer [WTD, DWTD]cccovvevevveieieiennnns 126
4-8-2 32 bits integer to 64 bits integer batch conversion [BDWTD]ccccccoiviviivniveiieiesnnennnns 128
4-8-3 Integer converts to float point [FLT, DFLT,FLTD]ccccovviviiiiiieiere s 129
4-8-4 Integer to double precision floating point[DFLTD,QFLTD] ..ccccovevvviveiececeeeiesesieniens 131
4-8-5 Float point converts to integer [INT, DINT] ..ccvcooiiiiiiiiiie e 132
4-8-6 Double - precision floating point to integer[DINTD,QINTD]....ccccoeveiiiniennrireiereneseniens 133
4-8-7 Single precision floating point to double precision floating point[ECON]cccccceevenene 134
4-8-8 Single precision floating point to double precision floating point batch conversion [BECON]
... 135
4-8-9 BCD convert to binary [BIN]coooiiiieiiieeieiecec ettt see 136
4-8-10 Binary convert t0 BCD [BCD]ccooe ittt sve e 138
4-8-11 Hex converts t0 ASCH [ASCI] ..ovviiie ettt 139
4-8-12 ASCIHI convert 10 HEX [HEX] ...ocoviieeiieie ettt 140
4-8-13 COAING [DECO] .. eevtiteiieieiteiieiesie ettt sttt ettt sttt sttt sttt nbe e 142
4-8-14 High bit coding [ENCOT]voiieiie ettt st sraenne e 144
4-8-15 Low bit cOdiNg [ENCOL] ...cvovieiieiiieiee sttt 146
4-8-16 Binary to Gray COae [GRY]vciieiiie ittt nne e 148
4-8-17 Gray code to binary [GBIN,DGBIN]ccceiiiiiiiieiieciee s 149
4-9. FLOATING NUMBER OPERATIONctteutiittisieesieesieesseaseasreaseesseestesssesssessesssesssesssesssesnnessnessesssenns 150
4-9-1 Floating Compare [ECMP,EDCMP]......cccoooiiiiiiiiieseesee et ee e 151
4-9-2 Floating Zone Compare [EZCP]coe oottt 152
4-9-3 Floating Addition [EADD, EDADD].......cccctieiiiiiieitie et 154
4-9-4 Floating Subtraction[ESUB,EDSUB]ccoviiiiiiciccice e 155
4-9-5 Floating Multiplication [EMUL, EDMUL]cccoiiiiiiiiiee e 157
4-9-6 Floating Division [EDIV, EDDIV]ccovoiiiiiiiciice sttt sve et 159
4-9-7 Float Square ROOt [ESQR]ccoveiiiiieieiie ettt e e nnaens 161
498 SINELSINT ..ttt ettt sttt sttt bbb bbbt be e b e 162
B 001 [1] [] [PPSR 163
4-9-10 TAN [TAN] s ettt ettt ettt bbbt e b bt et e bt e et e ere st e e 164
4-9-1T ASIN TASINT oottt ettt sttt ettt st et st eere st e e 165
4-9-12 ACOS [ACOS] ..teeereiterieie ettt ettt sttt sttt sttt sttt ne bt r et st ete st e ere st e e 166
4-9-13 ATAN [ATAN] ettt ettt ettt b ettt sttt e et e e 167
4-10 RTC INSTRUCTIONS ...cuttiuttettesteesteeteestesssesieesbeesteesseassesseeaseesbeesbeesbeasseaseeabeesbeenbeeneanneannesneenreans 168
4-10-1 Read the clock data [TRD]ccoiviiiieiieie ettt nreens 168
4-10-2 Write Clock Data [TWR] .. .coeiieieieeerie sttt sttt na 169
4-10-3 Clock data add [TADD]......ccouiieieieirierie sttt et sb e sn b e 171
4-10-4 Clock data SUD [TSUBT....cc.eiiiiiie ittt st sae s 173
4-10-5 Convert hour, minute, and second data to seconds [HTOS]......ccccceveririeninieniiienenes 175
4-10-6 Convert second data to hours, minutes, and seconds [STOH]ccccocvvininiiiiiiiicienns 176
4-10-7 Clock compPare [TCMPY ..ottt et sbe e 177
4-10-8 Date (year, month, day) compare [DACMP] ...ttt 178

4

5 HIGH SPEED COUNTER (HSC)occiiiiiiiiiie s 181

5-1 FUNCTIONS SUMMARYtttitiitiiteseatesteseatessesessessesessesseseasessessasessessesessessassssensasessensesessensessssensenes 181
B2 HSC IMIODE ...ttt sttt bbb bbbttt b et b ettt st b et n bt 182
BB HSC RANGE. ...t eitiitiieteete ettt sttt ettt ettt ettt b bbb e bt e bt e bt et ettt st et b ettt e enn 184
5-A HSC INPUT WIRING ...vevtttieiietisteeete ettt ettt ettt sttt es bbbttt b et ne b e ans 184
5-5 HSC PORTS ASSIGNMENTvivititeseatesteseatessesessesseseasessesessessesessessessesessessasessessesessessesessensesessensenes 184
5-6 AB PHASE COUNTING FREQUENCY DOUBLING SETTING ..uvrvtrereireeseerisieesrestesesreseesessessessssesseneens 186
5-7 HSC INSTRUCTION ...ttuvettttteteeteste et st seete st et st seabesae e esesse s sbe s e bt sbe e es e st et ese st e tebenbeeenenbeeenes 186
5-7-1 Single phase HSC [CNT]...cco it sttt st st neenae e 186
5-7-2 AB Phase HSC [CNT_AB]ciiiiiiiiiiirenieise et 188
B-7-3 HSC FESEE [RST] ..eviiteeetirteieiirie ettt bbbttt st 189
5-7-4 Read HSC value [DIMOV]cuviiiiiiiiiiiiirieets ettt 189
5-7-5 Write HSC value [DIMOV]....c.oiiiiiiiiiiireetne et 190
5-7-6 The difference between HSC and normal COUNLENcccoveiieieiienene s 191
58 HSC EXAMPLE.....ccuttitiete ettt sttt etttk be e s bt e bt e bt e bt e be e s be e sbe e sbeenbeenneenn e annenneenneenreens 191
5-9 HSC INTERRUPTIONceutieutientiestesieesieesteesteesteeneaseesseesmeesse e se e beesbesssesseesbeesbeesbeenneenneannesneenreenneans 193
5-9-1 Function overview and panel configuration...........cccccocvivi i 193
5-9-2 Single phase 100-segment HSC [CNT] ...oooviiieiiie e 195
5-9-3 AB phase 100-segment HSCICNT _AB]......ccoiiiiieiieit e 196
5-9-4 Interruption flag Of HSC........coiiiieee e e 198
5-9-5 Setting value meaning in absolute or relative Mode..........c.cccevveviveveece e 198
5-9-6 HSC interruption CyCle MOEccveiiieice e 201
5-9-7 CAM function of high speed counter interruptionccevvviievieeviee s 202
5-9-8 Interruption using notes and parameter addreSS.........ccveveeeerierieesieese e 203
5-9-9 Application of HSC INterrUPLION........ccviiiie e 204

6 COMMUNICATION FUNCTIONttt e 210
B-1 SUMMARY ...ttt ittt ettt ettt b e b et e e s et e h bt ek e e b e e b £ e s bt e skt e b bt e b e e e bt e nb e e bt e bt e nneenneaneenreenreen 210
LRI R0 1V o o] o SO USTTOSO PR S SR 210
6-1-2 COMMUNICALION PAFAMELELSvviivieiieie et te et e e re e be e ra e sraesreesreenreenes 217
6-2 MODBUS COMMUNICATION ...uttiteiteesteesteesteasseasse st sieesseesseessesssesssessesssessseasseessessnesnnesssessesssenns 217
6-2-1 FUNCLION OVEIVIBW ...ttt ettt bbbt et e b b nne s 217
6-2-2 Changing of ModbUS INSEFUCLIONccuveviiieiic e 218
6-2-3 Modbus commUNICAtION AAAIESSc.viiiiiiieiirie e 219
6-2-4 MOADUS dAta FOFMALoeiiiieiitieceee e bbb 222
6-2-5 CommMUNICALION INSIFUCTIONS.ttt b e 228
6-2-6 Modbus serial port ConfigUIratioN...........ccocueiiiiiiee i 237
6-2-7 Modbus Communication appliCatioN ..o 241
6-2-8 APPHCALION ...ttt bbbt s b e e e nae 241
6-3 FREE COMMUNICATIONcutieutietteettesieesteesteesteaseasseassesieesbe e beesbeasbeaseesseesbeesbeesbeenbeenneanneanbesbeenbeens 244
6-3-1 Free cOMMUNICAION MOTEocviiiiiieiiiieie ettt st st see 244
6-3-2 Serial port CONFIGUIALIONoouiiiiieieee e e 246
6-3-3 SUITADIE OCCASION.....etiitiiieie ettt bttt s sb et e b e b e 247
6-3-4 Free commuNiCation INSEFUCTIONc.viiiiiiiirirece e 248

6-3-5 Free commuNiCation EXAMPIEvcveierere et e e e e 251

6-4 COMMUNICATION FLAG AND REGISTERvvetviveieiestestesseeseessessessessessesssesssssessessessessessessesssessessens 258
6-5 READ WRITE SERIAL PORT PARAMETERS.....tveuvestestestesteaseeseessessessessessesssesssssessessessessesssssesssessessens 261
6-5-1 Read serial port parameters [CFGCR]cccocviiiieiiicc s 261
6-5-2 Write serial port parameters [CFGCW].......cocviviieiieieic e 262
6-5-3 Serial port parameter Nname and SEttiNGccccvvviieieereie e 263

7 PID CONTROL FUNCTION ..ottt snte et nne e nnne s 265
T-L1 PID INTRODUCTION ...e.vtttiuteteestestestestessesseasessessessessessesssasssssessessessessesssesssssessessessessesssssssnsessessens 265
7-2 INSTRUCTION FORM ...ttt s e ettt sttt ste st teane e s e et e e saestenteeneenaenseeenrens 265
7-3 PARAMETERS SETTING .vrutteuteteeutestestestestesseaseesessessessessesssesssssessessessessesssesssssessessessessesssessessessessens 267
7-3-1 Register and their fUNCHIONS. ... 268
7-3-2 Parameters DESCHIPLION.civiiieieeiesiere ettt e e st be e ena e e e e e neenrens 272
T-4 AUTO TUNE IMIODEe.ttititeeteeieie e stes e steeseeaetestestestessaesaesseseestestesseasaessensessessestessesssasennsessessens 274
T-5 ADVANCED IMODEcitiiiitiiiiee sttt sttt sttt et e et e bt et e e e be e e be e e be e e s ba e e be e e nbaeebee s 277
7-6 APPLICATION OUTLINES t1itutttiteesteesieessteesstessteesssessssessssesssssssssesssssessssssssssssssssssssessesssssessnesssnes 278
T=T APPLICATION .11t tutte sttt sstee sttt e ssteessbe e s beessbe e st e et e e be e e st e e ke e sbe e e bt e ek e e e be e e b e e bb e et e e e e ba e e be e e nbaeebee s 278
8 C LANGUAGE FUNCTION BLOCKcooiiciic ettt stne e snve e e sae e nnee e snee s 284
81 SUMMARY .ttt ittt sttt siee sttt ettt st st e bttt e et e ek e et e e ke e ek et e be e e kb e e Ea e e b e e e ba e e b e ra e nr s 284
8-2 INSTRUCTION FORMATeiutititie sttt sieesstee s ieesbee s steesbee s nbe e st e s be e st e e nba e e nbe e e s ba e e bee e nbee e nbb e e nbneennre s 284
8-3 OPERATION STEPS ...ttt iuttesstteiteessttesstessstesstessseeassesssbeessbesassseasbessbeeasbeeesbsessbaessbseesbeesnbseentnesssees 285
8-4 IMPORT AND EXPORT THE FUNCTIONS......ceiitiiiitiiiiieeiiessiessstressiesssteeesieessseessisessssesssnessssssssnssssnes 288
8-5 EDIT THE FUNC BLOCKStiiiiiiitit ittt sttt sttt st sttt e sba e st e nbaesbn e e nnneennne s 289
8-6 PROGRAM EXAMPLEttiitit ittt sttt sttt sttt et e b e bn e et e e nba e e be e e baeebee s 291
8-7 INEW FUNCTIONS ..ettteiutiessttessteessteessteessteestesssbeesbeessbeeabeeasbeeabeeasbeeebaeenbeeesbaeebeeenbeeebeeenbaenbee s 294
8-8 FUNCTION LIBRARY ...iiutteiutitiieesstesaiessstesantesssesassesassessssesssesssssssens 296
8-8-1 NEW FUNCLIONeeiiieie ettt be e be e e e e steesteenreenreenns 297
8-8-2 BASIC fUNCLIONS.......eiiiiie ettt ettt be e ae e staesteesaeeneeenns 297
8-8-3 NEWIY DUIIA.....coeiiieie ettt sreesreeeeenns 297
B84 Becuiiiieiiie ettt ettt et e te e beer e et e tearenbeeteere e e et enreareas 301

e oI = (010 o A PRSPPI 304
8-8-0 IMPOIT .ottt bbb re e nnes 305
o A © 11 1= gl {1 Tod 1 o] 4SS 306
8- APPLICATION NOTES . ..eiuttetutteiteesstesatessstesassesasesassesassessssesassssassesssssesssssssssesssssssssessesssssessssssssees 312
8-10 Q& A OF C LANGUAGEvvtiiieiietaieesttessteeatee s steesbaeasbesasbaeanbeesbee e sbaeasbeeesbaeesbeeenbeeennbeennneensres 315
8-11 FUNCTION TABLE .. tttititittitiieeeteessieeste e tee st e e bee st e st e st e et e et e e be e et e e ba e e bb e e nbaeebeeenbaeebee s 317
9 SEQUENCE BLOCKottt ee sttt e snte e s te e s e e e nnee e nnee s 321
9-1 CONCEPT OF THE BLOCK ..ottt sttt ae et e et e et e e nnaeennne s 321
0-2 CALL THE BLOGCK ...ttt ettt ettt et e et e et a e e be e e s ta e e nbe e e ntaeenee s 322
9-2-1 Add the BLOCKuicticiiiiie ettt sttt ettt st s be st ebe s et e tesbesbesbeebaeseetesaesrens 322
9-2-2 MOVE the BLOGCKccuiiiiiiiiecie ettt ettt ettt st st sttt besbesbesbeena e e e nbesbesrens 325
9-2-3 Delete the BLOCKciiiiieitectc ettt sttt ettt st st st ebe et bestesbesbeetaeeenbesresrens 326
9-2-4 MOify the BLOCKc.ecuiiiiiciiiieictisieees ettt sttt 326

9-3 EDIT THE INSTRUCTION OF THE BLOCKoiiiiiiiiiiie et 327

9-3-1 COMMEANG TEEM ..ottt et b et b bbbt b et b 327
0-3-2 PUISE TEBM ..ttt b ettt 329
LT LT T (T 3 TS 330
9-3-4 Module Read and Write (FROM/TO)INSIIUCLIONccvevviiieiiieeieieee s 331
9-4 RUNNING FORM OF THE BLOCKcoitiiiiieiisisienisie ettt sasseneennas 332
9-5 BLOCK INSTRUCTION EDITING RULES....eutveterttatesiseesesessasesessesesessesessssesessssssessssesessssesessssesesnss 334
9-6 BLOCK RELATED INSTRUCTIONS ...vtvvtiteriseeresesssseseseesesessessssssesesessesessssesessssesessssesessssesessssesessnss 336
9-6-1 INSLruCtion EXPIANALION..........ciiitiieeieiesere e e e st reena e e e e seenrens 336
9-6-2 The timing sequence of the INSLIUCLIONS............cccoviiiieicc e 338
9-7 BLOCK FLAG BIT AND REGISTEReutteterieeresestsseseseesesessesessssesessssesessssesessssesessssesessssesessssesesnss 342
10 SPECIAL FUNCTION INSTRUCTIONS ...ttt 344
10-1 PULSE WIDTH MODULATION [PWIM]oviiiieiiiii ettt st 344
10-2 FREQUENCY MEASUREMENT [FRQM]....oiiiiiiiiii ettt 347
10-3 PRECISE TIMING [STR] ...tt ittt ittt se et te et e et beeteanaesneesneesneenneeneenes 350
10-4 INTERRUPTION [EI], [DI], [IRET] cveectteitieeee ettt 355
10-4-1 EXternal INterrUPLIONcveiee ettt et e e ta e e saeseeaneas 355
10-4-2 TIMING INTEFTUPLION ..veivveiie ettt ss et e ba e e seeeneenneas 361
10-5 MULTI STATION CONTROL[IMSC] ...vvitieiieitce sttt ettt nne e 363
11 COMMON QUESTIONS AND ANSWERScco oot 371
QL: HOW TO CONNECT PLC WITH PC2 ittt sttt sttt n 371
Q2: PC CANNOT CONNECT PLC VIARSA485 PORT, IT SHOWS OFFLINE STATUS? ...oovvvviviviniiieenineeninenns 374
Q3: XG SERIES PLC SYSTEM UPGRADEciiitititiiiitiesieessiesastseassesssssesssaesssssssssessssssssssssssssssnsssseees 376
Q4: THE BIT SOFT COMPONENT FUNCTION. .. .0tiutetetitsieessteessiessstssassesssssssssasssssssssnessssssssssssssssnsnssssees 380
Q5: WHAT’S THE USE OF EXECUTION INSTRUCTION LDD/OUTD ETC?...cccviiieiiecieecie e 380
Q6: WHY THE OUTPUT LED KEEPS FLASHING WHEN USING ALT INSTRUCTION?.....ccccoviviniiiienineeinnn 381
Q7: WHY THE M AND Y CANNOT OUTPUT SOMETIME? ...uviiiiieiiieisieesieessieeesieessieesstnesssaessssesssnesssnens 381
Q8: CHECK AND CHANGE THE BUTTON BATTERY INTHE PCB OF PLC ...ccviiiiiic e 382
Q9: COMMUNICATE WITH SCADA SOFTWAREeoutitiiieeiitesiesssreasieesssssssssesssessssssssssssssssssssssssssssees 382
QL0: MODBUS COMMUNICATION ...tttiuteesstteatesasesassessssessssesssssssssesssssssssssssssssssssssssssssssssesssssssees 382
Q11: THE LED LIGHT OF XG SERIES PLC (PWR/RUN/ERR)ccviiiiiiiiiiiic e 382
Q12: THE RESULT IS NOT CORRECT WHEN DOING FLOATING OPERATION......cccitvierireerireesinessireesneesenens 383
Q13: WHY THE FLOATING NUMBERS BECOME MESSY CODE IN ONLINE LADDER MONITOR WINDOW? 383
Q14: WHY DATAERRORS AFTER USING DMUL INSTRUCTIONS?....c.vvtiitiiiiiieeiiieesineesineesinessinesninesnene s 384
Q15: WHY THE OUTPUT POINT ACTION ERRORS AFTER PLC RUNNING FORAWHILE?ccccccevvvenene 384
Q16: WHY EXPANSION MODULE DOES NOT WORK WHILE POWER INDICATOR ISON?cccvvvvennnen, 384
QL17: WHY THE SIGNAL INPUT BUT CANNOT SEE THE HIGH SPEED COUNTER WORKING ?ccccuvee. 384
Q18: C LANGUAGE ADVANTAGES COMPARED TO LADDER CHART? ..viiitiiiiiieeitieesieeesieeesinessineesinesnnne s 384
Q19: WHAT’S THE FUNCTION OF SW1AND SW2 OF PLC ..ciiiiiiiicieec et 385
Q20: WHAT’S THE DIFFERENCE OF SEQUENCE FUNCTION BLOCK TRIGGER CONDITION: RISING EDGE
TRIGGERED AND NORMALLY CLOSED CONDUCTION?couttiuiiiutiatiestiesteetesiesieesieesieeseeesaesnnessnesseeseeens 385
Q21: WHAT ARE THE DOWNLOAD MODES OF XG SERIES PLC AND WHAT ARE THEIR CHARACTERISTICS?
.. 385

Q22: WHAT KINDS OF CONFIDENTIALITY METHODS DO XG SERIES PLCS HAVE? ...co.vevvevvceririeians 386

Q23: PLC I/O TERMINAL EXCHANGING.....cvctiiiiiiitcis st 386
Q24: WHAT’S THE FUNCTION OF XG SERIES PLC INDIRECT ADDRESSING?covvviiiiiiiisisiniininines 387
Q25: How DOES XG SERIES PLC CONNECT TO THE NETWORK?.....ocuvviiiiiiiiisiniisc s 388
Q26: How TO ADD SOFT ELEMENT ANDLINE NOTE IN XDPPRO SOFTWARE?ccoovvimimiinininiininenes 388
Q27: DO NOT HAVE CLOCK FUNCTION?WHY IS THE CLOCK INACCURATE?ccviiiiiiiiiiissinie s 389
APPENDIX SPECIAL SOFT COMPONENTS ... 390
APPENDIX 1 SPECIAL AUXILIARY RELAYoviiiiiiiiiiii s 390
APPENDIX 2 SPECIAL DATAREGISTER......ccoiiiiiiiiiiisi s 396
APPENDIX 3 SPECIAL FLASH REGISTER......cccviiiiiiiiiiiisis s 404
APPENDIX 4 PLC RESOURCE CONFLICT TABLE ..ocvcviiiiiiiiniii s 408
APPENDIX 5 PLC FUNCTION CONFIGURATION LISTcviviiiiiiiiinininiiisnscssi s 408

1 Programming Summary

XG series PLC accept the signal and execute the program in the controller, to fulfill the
requirements of the users. This chapter introduces the PLC features, two kinds of
programming language and etc.

1-1 PLC Features

Programming Language

XG series PLC support two kinds of program language, instruction and ladder chart, the two
kinds of language can convert to each other.

Security of the Program

To avoid the stolen or wrong modifying of user program, we encrypt the program. When
uploading the encrypted program, it will check in the form of password. This can protect the
user copyright; meanwhile, it limits the downloading, to avoid change program by mistake.
XG series added new register FS. (For different XG models, please check the Data monitor in
XDPpro software for FS register range, common range is FS0~FS47). FS value can be
modified but cannot be read through Modbus instruction. FS cannot be compared to register
but only constant in XDPpro software. The value cannot be read. FS is used to protect the
user’s copyright. The register D, HD... can replace by FS.

Program comments

When the user program is too long, the comments of program and soft components are
necessary in order to change the program easily later.

Offset Function

Add offset appendix (like X3[D100], M10[D100], DO[D100]) after coils, data registers can
make indirect addressing. For example, when D100=9, X3[D100]=X[3+9]=X14.
M10[D100]=M19, DO[D100]=D9

Rich Basic Functions

XG series PLC has enough basic instructions including basic sequential control, data moving
and comparing, arithmetic operation, logic control, data loop and shift etc.

XG series PLC also support interruption, high speed pulse, frequency testing, precise time,
PID control and so on.

C Language Function Block

XG series PLC support C language; users can call the C program in ladder chart. This
function improves the programming efficiency.

9

Stop PLC whenreboot

XG series PLC support “Stop PLC when reboot” function. When there is a serious problem
during PLC running, this method can stop all output immediately. Besides, if the COM port
parameters are changed by mistake, this function can help PLC connect to the PC.

Communication Function

XG series PLC has many communication modes, such as Modbus-RTU, Modbus-ASCI|I.
When the COM port parameters are changed, the new parameters will be valid immediately
without restarting the PLC.

Modbus communication adds the setting of delay waiting time before communication. That is,
as a slave, when the master communication command is too frequent and the slave PLC is too
late to respond, the slave will reject the master command until the communication command
being executed is completed.

XG2 supports EtherCAT bus function, with a maximum number of 32 stations. At present, it
only supports slave stations with EEPROM, such as Xinje-DS5C, Panasonic EtherCAT servo,
Kollmorgen servo, etc., but does not support Inovance servo.

1-2 Programming Language

1-2-1 Type

XG series PLC support two types of programming language:

Instruction

Make the program with instructions directly, such as “LD”, “AND”, “OUT” etc. This is the
basic input form of the programs, but it’s hard to read and understand.

E.g.: step instruction operand
0 LD X0
1 OR Y5
2 ANI X2
3 ouT Y5
Ladder chart

Make sequential control graph with sequential control signal and soft components. This
method is called “Ladder chart”. This method uses coils and contactors to represent sequential
circuit. The ladder chart is easy to understand and can be used to monitor the PLCstatus
online.

E.g.:

X0 X2

Y5

10

1-2-2 Alternation

The two kinds of programming language can be transformed to each other.

> Ladder

1-3 Programming mode

Direct Input

The two kinds of programming language can be input directly in the editing window. The
ladder chart window has hint function which improves the programming efficiency greatly.

PLCL - Ladder 4 b X

X10

o —f | CALL__PO

T0 YO

+ —F ¢ 5

M800o O Ki0o
8 I

T0 1

s

X13 S0
5

i
—WJ

Instruction Configuration

Some instruction is complicated to use, like pulse output, PID etc. XDPPro software has the
configuration window for these special instructions. User just needs to input parameters in the
configuration window without remembering complicated instructions. The following window
is multi section pulse output.

multi section pulse cutput | = |
Data start address: | DD user params address: D100 System params: | K1 Cutput: | YD
Mode: Start execute section count: | 0 Pulse Config

© Add Delete | Upwards Downwards

frequence pulse count wait condition walt register Jump register

used space: Read Fom PLC | | WiteToPLC | [0K | | Cancel

1

2 Soft Component Function

In chapter 1, we briefly introduce the programming language. However, the most important
element in a program is the operands. These elements include the relays and registers. In this
chapter, we will describe the functions and using methods of these relays and registers.

2-1 Summary of the Soft Components

There are many relays, timers and counters inside PLC. They all have countless NO
(Normally ON) and NC (Normally Closed) contactors. Connect these contactors with the
coils will make a sequential control circuit. Next we will introduce these soft components.

Input Relay (X)

e The functions of input relays
The input relays are used to receive the external ON/OFF signal, the sign is X.

e Address AssignmentPrinciple

» In each basic unit, X address is in the form of octal, such as X0~X7, X10~X17 ...

» The extension module address: module 1 starts from X10000, module 2 starts from

X10100.... XG1/XG2 can connect up to 16 expansion modules.

e Using notes
The digital filter is used in the input filter of the input relay. Users can change the filter
parameters by setting the special register SFDO, default value is 10ms, modification range: 0
~ 1000ms.
There are enough input relays in the PLC. The input relay whose address is more than input
points can be seemed to auxiliary relay.

Output Relay ()

e Function of the output relays
Output relays are the interface to drive the external loads, the signis Y.

o Address Assignment Principle
In each basic unit, Y address is in the form of octal, such as YO~Y7, Y10~Y17 ...
The extension module address: module 1 starts from Y10000, module 2 starts from Y10100...
XG1/XG2 can connect up to 16 expansion modules.

e Using notes
There are enough output relays in the PLC. The output relay whose address is more than
output points can be seemed to auxiliary relay.

Auxiliary Relays (M, HM)

e Function of Auxiliary Relays

Auxiliary relays are internal relays of PLC, the sign is M and HM.
e Address assignment principle

In basic units, assign the auxiliary address in decimal form

12

e Using notes
This type of relays are different from the input/output relays, they can’t drive external load
and receive external signal, but only be used in the program;
Retentive relays can keep its ON/OFF status when PLC power OFF.

Status Relays (S, HS)

e Function of status relays
Used as relays in Ladder, the sign is S, HS.
e Address assignment principle
In basic units, assign the address in decimalform.
e Using notes
If it is not used as operation number, they can be used as auxiliary relays, programming as
normal contactors/coils. Besides, they can be used as signal alarms, for external diagnose.

Timer (T, HT)

e Function of the timers
Timers are used to accumulate the time pulse like 1ms, 10ms, 100ms etc. when reach the set
value, the output contactors acts, represent sign is T and HT.
e Address assignment principle
In basic units, assign the timer address in decimal form. Please refer to chapter 2-2 for details.
e Time pulse
There are three timer pulses: 1ms, 10ms, and 100ms. For example, 10ms means accumulate
10ms pulses.
e Accumulation/not accumulation
The timer has two modes: accumulation timer means even the timer drive coil is OFF, the
timer will still keep the current value; while the not accumulation timer means when the
accumulation value reaches the set value, the output acts, the accumulation value reset to 0.

Counter (C, HC)

According to different application purposes, the counters contain different types:

e For internal counting (for general using/power off retentive usage)
16 bits counter: for increment count, the count range is 1~32,767
32 bits counter: for increment count, the count range is 1~2,147,483,647
These counters are for PLC internal signal. The response speed is one scan cycle or longer.

e For High Speed Counting (Power-off retentive)
32 bits counter: the count range is -2,147,483,648~ +2,147,483,647 (single phase incremental
counting, AB phase counting), assign to special input terminals.
The single-phase incremental counting and AB phase counting of XG1 series high-speed
counting can count the frequency below 80kHz and 50kHz respectively, and the single-phase
incremental counting and AB phase counting of XG2 series high-speed counting can count
the frequency below 800kHz and 800kHz respectively, regardless of the scanning cycle of the
programmable controller.

13

® Address assignment principle
In basic units, assign the timer address in decimal form.

Data Register (D, HD)

e Function of Data Registers
Data Registers are used to store data, the sign is D and HD.
e Address assignment principle
The data registers in XG series PLC arel6 bits (the highest bit is sign bit), combine two data
registers together is for 32 bits (the highest bit is sign bit) data processing.
e Using notes
Same to other soft components, data registers also have common type and power-off retentive

type.

FlashROM Register (FD)

e Function of FlashROM registers
FlashROM registers are used to store data, the sign is FD.

e Address assignment principle
In basic units, FlashROM registers address is in form of decimal.

e Using notes
Even the battery powered off, this area can remember the data. So this area can store
important parameters. FlashROM can be writen for about 1,000,000 times, and it takes
timewhen writing. Frequently writing can cause permanent damage for FD.

Special secret Register (FS)

e The Function of Secret Register
A part of the FlashROM register is used to store data in soft components, which are
represented by the symbol FS. The values in the FS register can be written but can not be read,
so they can be used to protect the intellectual property rights of users.
e Address Allocation Principle
In the basic unit, FS registers are addressed in decimal numbers.
e Since the number of FS registers of different types of PLC may be different, please refer
to the "PLC Initial Settings" shown in the online PLC software, generally FS0-FS47.
e Attention Points in Use
The storage area can remember data even if the battery is powered down, so it can be used to
store important process parameters. FS can be written about 1,000,000 times, and it takes
more time to write each time. Frequent writing will cause permanent damage to FS, so it is
not recommended that users write frequently. When using MOV instruction to transmit data
to FS, the rising edge is valid.
e The value of the soft element can be set arbitrarily in the FS register, but the value of the
register can not be read (always returned to 0); and it can not be compared with the

14

register in the PLC software, only with the constant, so the actual value of the register can
not be read.

Constant (B) (K) (H)

B means Binary, K represents Decimal, H represents Hexadecimal. They are used to set
timers and counters value, or operands of application instructions. For example hex FF will
be HFF.

2-2 Structure of Soft Components

2-2-1 Structure of Memory

In XG series PLC, there are many registers. Besides D, HD, FlashROM registers, we can also
combine bit to register.

Data Register D, HD, FD

For common use, 16 hits

For common use,32 bits (combine two continuous 16-bits registers)

For common use,64 bits (combine two 32-bit registers, but addresses must be consecutive).
For power off retentive use, cannot modify the retentive range

For special use, occupied by the system, can’t be used to common instruction parameters
For offset use (indirect assignment)

Form: Dn[Dm], HDn[Dm], Xn[Dm], Yn[Dm] , Mn[Dm], etc.

—18'\1/'}2—{ Mov\ KO \ DO‘
—Mmz—{MOV‘KS‘DO‘

jML—{ MOV | D10[p0] | D100 |

When D0=0, D100=D10, YO is ON.

When M2 turns from OFF to ON, D0=5, then D100=D15, Y5 is ON.

Therein, D10[D0]=D[10+D0], YO[DO0]=Y[0+DQ].

The word offset combined by bit: DXn[Dm] represents DX[n+Dm].

The soft components with offset, the offset can represent by soft component D, HD, FD.

Timer T, HT/Counter C, HC

For common usage,16 bits, represent the current value of timer/counter.

For common usage,32 bits, (combine two continuous16 bits registers)

To represent them, just use the letter+address method, such as T10, C11, HT10, HC11.
E.g.

15

X0
—i—— TMR | T11 | K99 | K100

HN%P—{ MOV \ T11 \ DO \
i+ S

In the above example, MOV T11 DO, T11 represents word register.
LD T11, T11 represents bit register.

FlashROM Register FD

For power off retentive usage,16 bits

For power off retentive usage,32 bits, (combine two continuous16 bits registers)

For power off retentive usage,64 bits, (combine two continuous32 bits registers)

For special usage, occupied by the system, can’t be used as common instruction parameters

Register combined by bits

For common usage,16 bits, (combinel6 bits)

The soft components which can be combined to words are: X, Y, M, S, T, C, HM, HS, HT,
HC.

Format: add “D” in front of soft components, like DM10, represents a 16-bits register from
M10~M25.

Get16 bits beginning from DXn, cannot beyond the soft components range

The word combined by bits cannot do bit addressing

E.g.

—W—{ Mov | k21 | Dvo |
—M{Tﬂ—{ MOV \ K3 \ DO \
HSMM MOV | DX2[D0] | D10 |

When MO changes from OFF to ON, the value in the word which is combined by YO~Y17
equals to 21, i.e. YO, Y2, Y4 become ON.

Before M1 activates, if D0=0, DX2[D0] represents a word combined by X2~X21.

If M1 changes from OFF to ON, D0=3, then DX2[D0] represents a word combined by
X5~X24.

2-2-2 Structure of Bit Soft Components

Bit soft components include X, Y, M, S, T, C, HM, HS, HT, HC. Besides, the bit of the
register also can be used as bit sofst component.

Relay

16

Input Relay X, octal form

Output Relay Y, octal form

Auxiliary Relay M, HM, S, HS; decimal form

Auxiliary Relay T, HT, C, HC, decimal form. The represent method is same to registers, so
we need to judge if it’s word register or bit register according to the instruction.

The bit of register

Composed by bit of register, support register D

Represent method: Dn.m (0<m<15): for example D10.2 means the second bit of D10
The represent method of bit with offset: Dn[Dm].x

Bit of register can’t compose to word soft component again;

E.g.:
DO0.4
1 YO
D5[D1].4 Vi

D0.4 means when the fourth bit of DO is 1, set YO ON.
D5[D1].4 means bit addressing with offset, if D1=5, then D5[D1] means the fourth bit of D10.

2-3 Soft Components List

The number of XG series software components is assigned as follows. In addition, when
connecting input and output expansion equipment and special expansion equipment on the
basic unit, please pay attention to the number of input and output relays. Please refer to the
operation manual.

XG1 soft components list:

Range Points

Code Name ; -
16 points 16 points

X Input points X0~X7 8

Y Output points YO~Y7 8

X10000~2X10077 (expansion modulel)

X11700~X11777 (expansion modulel6)
X20000~X20077 (reserved)
X20100~2X20177 (reserved)
X30000~X30077 (reserved)

X Input points™? 1216

Y10000~Y10077 (expansion modulel)

Y11700~Y11777 (expansion modulel6)
Y20000~Y20077 (reserved)
Y20100~Y20177 (reserved)
Y30000~Y30077 (reserved)

Y Output points™ 1216

17

Cod . Range Points
oce ame 16 points 16 points
M MO0~M69999 70000

HM Internal relay HM0~HM11999™* 12000

SM Special use SM0~SM4999*2 5000
S Flow S0~87999 8000
HS HS0~HS999™! 1000
T T0~T4999 5000
HT Timer HT0~HT1999™ 2000
ET Precise timing ETO~ET39 40
C C0~C4999 5000
HC Counter HC0~HC1999** 2000

HSC High speed counter HSCO~HSC39 40
D D0~D69999 70000

HD . HDO0~HD24999™* 25000

SD Data register Special use SDO~SD4999 5000

HSD Special use HSDO~HSD1999™2 2000

FD FlashROM FDO~FD8191 8192

SFD register Special use SFDO~SFD5999*? 6000

Fs Special_security FSO~ES47 48
register
Main body IDO~ID99 100
1D10000~1D10099 (expansion modulel)
x4 | eeeens

D Expansion module [ID11500~1D11599 (expansion modulel16) 1900

ID20000~1D20199 (reserved)

ID30000~1D30099 (reserved)
Main body QD0~QD99 100

QD10000~QD10099 (expansion
modulel)
oD*s e _
Expansion module QD11500~QD11599 (expansion 1900
modulel6)
QD20000~QD20199 (reserved)
QD30000~QD30099 (reserved)
Special coil for
sem | Seduence block SEMO~SEM31 32

WAIT command

18

XG2 soft components list:

Cod N Range Points
oce ame 26 points 26 points
X Input points X0~-X21 18
Y Output points YO~-Y7 8

X10000~X10077 (expansion modulel)
s X11700~X11777 (expansion modulel6)
X Input points™ X20000~X20077 (reserved) 1216
X20100~X20177 (reserved)
X30000~X30077 (reserved)
Y10000~Y10077 (expansion modulel)
. % | Y11700~Y11777 (expansion modulel6)
Y | Output points™ Y20000~Y20077 (reserved) 1216
Y20100~Y20177 (reserved)
Y30000~Y30077 (reserved)

M MO0~M699999 700000
HM Internal relay HMO0~HM47999* 48000
SM Special use SM0~SM49999*? 50000

S Flow S0~S79999 80000
HS HS0~HS3999™* 4000

T T0~T49999 50000
HT Timer HTO~HT7999* 8000
ET Precise timing ETO~ET39 40

C C0~C49999 50000
HC Counter HCO~HC7999™* 8000
HSC High speed counter HSCO~HSC39 40

D D0~D699999 700000
HD) HDO~HD99999** 100000
SD Data register Special use SDO~SD9999 10000

HSD Special use HSDO~HSD7999*2 8000

FD FlashROM FDO~FD65535 65536

SFD register Special use SFDO~SFD9999*? 10000

ES Special_security ESO~FSA7 48

register
Main body IDO~ID99 100
1D10000~1D10099 (expansion modulel)
%4 | eeeees

D Expansion module ID11500~1D11599 (expansion module16) 1900

ID20000~1D20199 (reserved)

ID30000~1D30099 (reserved)
QD™ Main body QD0~QD99 100

19

Range Points

Code Name

26 points 26 points
QD10000~QD10099 (expansion
modulel)
Expansion module QD11500~QD11599 (expansion 1900
modulel6)

QD20000~QD20199 (reserved)
QD30000~QD30099 (reserved)

Special coil for
sequence block

WAIT command SEMO~SEM31 32

SEM

Note:

> 1: the range of soft components marked with > 1 is the default power-off holding area
(Note: XG series PLC power-off holding area cannot be modified).

% 2: special use (not power-off hold), refers to the special-purpose registers occupied by the
system, which cannot be used for other purposes. For details, please refer to the relevant
contents of the chapter "list of special software components" in the appendix of this manual.
> 3: the 1/0 address allocation (octal) of the expansion module. Those exceeding the 10
points and the reserved 10 points can be used as intermediate relays. XG series PLC can
expand up to 16 expansion modules at the same time.

> 4: analog input software component address, and the reserved register can be used as a
common register.

> 5: analog output software component address, and the reserved register can be used as a
common register.

> 7: the range of the above software components is the effective range in X-NET
communication mode or Ethernet communication mode. Under Modbus communication
mode, some relays cannot be read and written. See section 6-2-3 for specific available range.

20

2-4 Input/output relays (X, Y)

Number List

XG series PLC input/output are all in octal form, each series numbers are listed below:

Series | Name Range : Solle
16 points 26 points 16 26
e m— : ; :
X - X0~X21 - 18
XG2 Y - YO~Y7 - 8
Note:

XG2 series PLC, X0 X1 X3 X4 X6 X7 X11 X12 is differential input, X2 X5 X10 X13 X14 X15
X16 X17 X20 X21 is NPN input.

Function

XG series PLC
CPU unit

A [eulwa] indinQ

ndinQO [eubis JeuleIx3

nduj Jeubis euta1x3
X [eulwla] nduj

Input Relay X

PLC input terminals are used to recive the external signal. the input relays are optocoupler to
connect PLC and input terminals

The input relays which are not connected with external devices can be seemed to fast internal
relays

Output Relay Y]

PLC output terminals can be used to send signals to external loads. Inside PLC, output relay’s
external output contactors (including relay contactors, transistor’s contactors) connect with
output terminals

The output relays which are not connected with external devices can be seemed to fast
internal relays

21

Execution Order

m . Y
> - — XG series O O =
5 3 3 g g <
5 S S| PLC g g B
” ~ S | CPU unit = 3 ¥
wn @ 3 = =
& —> 3 — & g > o > S
= 3, Program Q 3

2 3 g ® 5 =
= =3 c?g process area > s o
2 x 9’ 8 < =l

Input processing

Before PLC executing the program, read every input terminal’s ON/OFF status to the image
area.

When the program is running, even the input changed, the content in the input image area will
not change until the next scanning period coming.

Output processing

After running all the instructions, transfer the ON/OFF status of output Y image area to the
output lock memory area. This will be the actual output of the PLC.

The output contactors will delay the action according to the output soft components reponse.

2-5 Auxiliary Relay (M, HM, SM)

Number List

The auxiliary relays in XG series PLC are all in decimal form, please see the following table:

. Range
Series | Name : -
Common use Power-off holding Special use
XG1 M MO0~M69999 HMO0-HM11999 SM0~SM4999
XG2 MO0~M699999 HMO0-HM47999 SM0~SM49999

Note: The above range of software components is the effective range in X-NET
communication mode or Ethernet communication mode. Under Modbus communication
mode, some relays cannot be read and written. See section 6-2-3 for specific available range.

In PLC, auxiliary relays are used frequently. This type of relay’s coil is same to the output
relay. They are driven by soft components in PLC.

22

Auxiliary relays M and HM have countless normally ON/OFF contactors. They can be used
freely, but this type of contactors can’t drive the external loads.

e For common use
This type of auxiliary relays can be used only as normal auxiliary relays. l.e. if power supply
suddenly shut down during the running, the relays will be off.
Common usage relays can’t be used for power off retentive, but the zone can be modified

e For Power Off Retentive Use
The auxiliary relays for power off retentive usage, even the PLC is OFF, they can keep the
ON/OFF status.
Power off retentive zone cannot be modified
Power off retentive relays are usually used to memory the status before stop the power, then
when power the PLC on again, the status can run again

e [or Special Usage
Special relays are some relays which are defined with special meanings or functions, start
from SMO.
There are two functions for special relays, first is used to drive the coil, the other type is
forspecial running.
E.g.: SM2 is the initial pulse, activates only at the moment of start
SM34 is “all output disabled”
Special auxiliary relays can’t be used as normal relay M

2-6 Status Relay (S, HS)

Address List

Status relays addresses of XG series PLC are in form of decimal, the address is shown below:

Series | Name Range -
Common use Power-off holding

XG1 S S0~S7999 HS0~HS999

XG2 S0~S79999 HS0~HS3999

Note: The above range of software components is the effective range in X-NET
communication mode or Ethernet communication mode. Under Modbus communication
mode, some relays cannot be read and written. See section 6-2-3 for specific available range.

Function

Status relays S and HS are very import in ladder program; they are used together with
instruction “STL” in the flow. The flow can make the program clear and easy to modify.
e For common use
After shut off the PLC power, S relays will be OFF
e For Power Off Retentive Use

23

HS relays can keep the ON/OFF status even PLC power is off
o The status relays also have countless “normally ON/OFF” contactors. So users can use
them freely in the program.

2-7 Timer (T, HT, ET)

Address List

The timer addresses of XG series PLC are in the form of decimal, please see the following
table:

Series | Name ege

Common use Power-off holding Precise timing
XG1 HTT TO~T4999 HTO~HT1999 ETO~ET24
XG2 ET T0~T49999 HTO~HT7999 ETO~ET24

Note: The above range of software components is the effective range in X-NET
communication mode or Ethernet communication mode. Under Modbus communication
mode, some relays cannot be read and written. See section 6-2-3 for specific available range.

Function

The timers accumulate the 1ms, 10ms, 100ms pulse, the output contactor activates when the
accumulation reaches the set value.
TMR instruction is for common timers. The set value can be constant (K) or data register (D).

Normal type
X0
—fH—{T™R | To [K200 | Kig If X0 is ON, then TO
TO YO accumulates 10ms pulse based
| | ()
H v on the current value; when the

o accumulation value reaches
jt_\— the set value K200, the timer
X0 i outputactivates. l.e. the output
| s activates 2s later. If X0 is

______ « >)
Current -+ value OFF, the timer resets, the

output resets;
YO P

24

Accumulation type

X M TMR_A‘ HTO \ K2000 \ K10

HTO Yo

X2
—i

tl t2 t1+t2=20s

Appoint the set value

Instruction format

(su) (s2) ()
—— TMR | To | K200 | Kio |

(1) (s2) (s3)
—— TMRA [To | k00| Kio |

Reset the timer and output:

(s1)
’—H—{ RST | To |

S1: timer (TO, HT10)
S2: set time (such as K100)

If X0 is ON, HTO accumulates the
10ms pulse based on the current
value. When the accumulation
value reaches the set value K2000,
the timer outputactivates.

If X0 is suddenly OFF during timer
working, the timer value will be
retentive. Then X0 is ON again, the
timer will continue working.

When X2 is ON, the timer and
output will be reset.

(Not accumulation)

(Accumulation)

S3: time unit (K1—1ms, K10—10ms, K100—100ms)

Power-off not retentive, not accumulation

(1) Time unit is 1ms, set time is K100, the real time is 1ms *100=0.1s

MOV K100 DO

X0 ;
% TMR TO K100 KI |

Set value is constant K

TMR TO DO K1

set value is register D

(2) Time unitis 10ms, set time is K10, the real time is 10ms*10=0.1s

—

MOV K10 DO ‘

}HXM TMR TO K10 K10 \HXO% TMR TO DO K10 \

Set value is constant K

set value is register D

(3) Time unit is 100ms, set time is K1, the real time is 100ms*1=0.1s

HXF{ MOV K1 DO |
}HXM TMR TO K1 K100 \HXM TMR TO DO K100 |

Set value is constant K set value is register D

Power-off retentive, accumulation
(1) Time unit is 1ms, set time is K100, the real time is 1ms *100=0.1s

HXF{ MOV K100 DO \

X0 X0
}H K1 — K1

Set value is constant K set value is register D
(2) Time unitis 10ms, set time is K10, the real time is 10ms*10=0.1s

H% MOV K10 DO ‘
}on% ”'”—Amoo <10 HXM TMR_A HTO DO K10 \

Set value is constant K set value is register D
(3) Time unitis 100ms, set time is K1, the real time is 100ms*1=0.1s
X1

% MOV K1 DO ‘
}H% TMR_A HTO K1 K100 ‘ X0 T R_AmoHoIO DO

Set value is constant K set value is register D

Notes

(1) The timer has cumulative, non-cumulative, 1ms, 10ms and 100ms, so it can be
distinguished by instructions; that is to say, the same timer can be used as either cumulative or
non-cumulative, and its time base unit is also specified by instructions as 1ms, 10ms or 100ms.
(2) The third parameter of instruction can only be based on K1, K10 and K100. Please do not
write other values or registers besides these three parameters. Otherwise, although the
program can be written into the programming software and downloaded to the PLC, the
timing instruction will not be executed.

(3) The setting range of constant K and the actual setting value of timer are shown in the
following table:

Timer K range Actual value

1ms timer 0.001~32.767s

10ms timer 1~32,767 0.01~327.67s

100ms timer 0.1~3276.7s
Time value

26

The time value is stored in register TD. The working mode of timer TO~T575 and HTO~HT95
are 16-bits linear increasing. The time range is from 0 to 32767. When the time value in TD
reaches 32767, the timer will stop timing and keep the status.

HXM MOV TO DO \
HXM MOV TDO DO \

The two instructions are the same. In the first instruction, TO is seemed to TDO.

Application

Output delay

X

0 T2
— H) X0
Y(}J X0
— LVH TMR | T2 [K200] K10 | vo T2

X0 is ON, output YO. X0 changes from ON to OFF, delay 2s then cut off YO.

YO

Twinkle

HXOHT/L{ TMR | T1 | K20 [K10 |
T1 X0

————{T™MR[T2 [K10[K10 | Tl T2, T1
Y0

e

YO

)
X0 is ON, YO0 begin to twinkle. T1 is YO-OFF time; T2 is YO-ON time.

2-8 Counter (C, HC, HSC)

Number list

The counter addresses of XG series PLC are in decimal, please see the following table for
details:

Series | Name Range
Common use Power-off holding High speed counter
XG1 c C0~C4999 HCO0~HC1999 HSCO~HSC39

27

XG2 |_||_|SC(:: C0~C49999 HCO~HC7999 HSCO0~HSC39

Note: The above range of software components is the effective range in X-NET
communication mode or Ethernet communication mode. Under Modbus communication
mode, some relays cannot be read and written. See section 6-2-3 for specific available range.

The counter range:

Counter type Explanation
16/32 bits up/down | CO~C575 HCO~HC95 (32-bits counter occupies two registers, the
counter counter address must be even number)

) HSCO~HSC30 (HSCO,HSC2...HSC30) (each counter occupies two
High speed counter | registers, the counter address must be even number)

1: Please refer to chapter 5 for details of high-speed counter.

2: XG series counters can be 16 or 32 bits count up/down mode. The mode is appointed by
the instruction. Which means the same counter can be used as 16-bit or 32-bit. The
increment/subtraction counting mode is also specified by the instruction mode.

Counter
features
Item 16-bit counter 32-bit counter
Count direction | Count down/up Count up/down
Set value -32,768~32,767 -2,147,483,648~+2,147,483,647
Set value type Constant K or register Constant K or a couple of registers
The value will not . .
. The value will not change when reaching
Count value change when reaching .
. the max or min value
the max or min value
Set ON when counting Set ON when counting value reached
Output value reached and keep
and keep the output status
the output status
Reset Run RST instruction, the counter and output will be reset
Present count | 46 iy 32-bit
value register
Function

The soft component will appoint the type of counter: common counter or power-off retentive
counter.

16-bit common counter and power-off retentive counter

The set value range of 16-bit count-up counter is K1~K32,767(decimal). KO and K1 have the
same function. They mean the counter output will act at the first counting.

28

If the PLC power supply is cut off, common counter value will be reset. The power-off
retentive counter value will be kept.

K w0]
X11

—H—{ CNT‘ CO‘KlO‘

Cco YO
L —— G

The counter CO increases one when the X11 drives once. When CO value reaches 10, the
output acts. Then X11 drives again, CO will continue increase one.

If X10 is ON, the CO and output will be reset.

The counter set value can be constant K or register. For example, if D10 is 123, the set value
is equal to K123.

When writing the new set value into the current value register with MOV, if the current count
value < the new set value < the original set value, CO is on when the new set value is counted;
If the new set value < the current count value < the original set value, CO will be on when
X11 is input next time.

32-bit common counter and power-off retentive counter

The set value range of 32-bit count-up/down counter is K+2,147,483,648~K-2,147,483,647
(decimal). The count direction is set through instruction.

X3 X3

] —4+—— RST HCo

X4 X4

Y) - M DCNT D HCO K-5

Co YO0 HCO YO

| () A €) |
Common count up counter power-off retentive count down counter

If X3 is ON, the counter and output will be reset.

For power-off retentive counter, the present counter value, output state will be kept after
power supply is off.

32-Dbit counter can be seemed to 32-bit register.

Counter set value

The set value contains two conditions: 16-bit and 32-bit. The counter types include common
counter (C) and power-off retentive counter (HC).

Count instruction:

16-bit counter:

EMCY

‘ K200 ‘ Count up

% CNT ‘
(s ()
1 oNTD | c1 | K100 |countdown

29

32-bit counter:

(v (s2)
| DoNT | co [Katooo | Countup

| DCNTD | C2 | K-41100 | Count down

Reset instruction:
16-bit counter:

(s1)
’—H—{ RST | co |

32-bit counter:

(s1)
’—H—{ DRST | co |

S1: counter (such as C0O, HC10)

S2: counter set value (such as K100)

The counter is different from XC series. They don’t have 16-bit and 32-bit type. The type is
set through instruction.

16-bit counter (common, count up)

{set value is constant K) {set value is register »
X0
| } MOV K5 DO \
X1 X1
}—{ CNT CO K5 Y } CNT CO DO ‘
16-bit counter (power-off retentive, count up)
{set value is constant K) {set value is register »
X0
| } MOV K5 DO ‘
X1 X1
}—{ CNT HCO K5 ‘ Y } CNT HCO DO ‘
16-bit counter (common, count down)
(set value is constant K) (set value is register »
X0

] } MOV K-5 DO ‘
e CNT D CO K-5 X1
= - | } CNTD CO DO ‘

16-bit counter (power-off retentive, count down)
(set value is constant K) (set value is register »

X0
] MOV K-5 DO ‘

\
\
g CNT D HCO K-5 Xl
’—{ D HCO K- | } CNT D HCO DO ‘

32-bit counter (common, count up)
{set value is constant K) {set value is register »

} DMOV K43100 DO ‘
X1 X1
——{ DCNT Co K43100 1 } DCNT CO DO ‘

32-bit counter (power-off retentive, count up)
{set value is constant K) (set value is register)

} DMOV K43100 DO ‘
X1 X1
}—{ DCNT HCO K43100 \ Y } DCNT HCO DO ‘

32-bit counter (common, count down)
{set value is constant K) {set value is register »

DMOV K-43100 DO ‘

\
X1 1 ‘
H DCNT D CO K-43100 r } DONTD G0 DO ‘

32-bit counter (power-off retentive, count down)
(set value is constant K) (set value is register »

DMOV K-43100 DO ‘

\
X1 X1 ‘
H DCNT D HCO K-43100 | } DONT D HCo DO ‘

Note: The setting range and actual setting value of constant K are shown in the following
table:

Counter K setting range Actual setting range

16-hit counter 1~32,767 1~32,767

32-bit counter 1~2,147,483,647 1~2,147,483,647
Count value

The counter counting mode is 16-bit linear incremental mode (0~K32,767). When the
counter's count value CD reaches the maximum value K32,767, the counter will stop counting
and the state of the counter will remain unchanged.
The counter counting mode is a 16-bit linear decreasing mode (-32768-0). When the counter
counting value CD decreases to the minimum value K-32, 768 will stop counting and the state
of the counter remains unchanged.
The counter counting mode is 32-bit linear increase/decrease mode (
-2,147,483,648~+2,147,483,647). When the counter counting value increases to the
maximum value K2,147,483,647, it will become K-2,147,483,648. When the counter

31

counting value decreases to the minimum value K-2,147,483,648 will become
K2,147,483,647, the ON/OFF state of the counter will also change with the change of the
count value.

X0 X0
—— MOV CO DO —— MOV CDO0 DO

The above two instructions are equivalent. In the left instruction, CO is processed as a register,
while in the right instruction, CDO is a data register corresponding to the timer C0. CD and C
are one-to-one correspondences.

X0
% CNT CO K1000 ‘

The highest frequency that this instruction can count is related to the selection of filter
parameters and the scanning period of PLC. A high-speed counter is recommended when
the input frequency exceeds 25Hz. High-number counter must use HSC0-HSC30 and
corresponding hardware wiring.

SMO
H CNT HSCO K888888

High-speed counter, when SMO is on, HSCO counts the pulse signal of input terminal XO.
High-speed counter is not affected by the response lag time of input filter and cycle scan time.
Therefore, higher frequency input pulses can be processed. Refer to the details in chapter 5.

2-9 Data register (D, HD, SD, HSD)

Address list

The data register of XG series PLC is in decimal format. Please see the following table:

Series | Name Range
Common use Power-off holding Special use | Special power-off
holding
XG1 D0~D69999 HD0~HD24999 SD0~SD4999 | HSD0~HSD1999
D
XG2 D0~D699999 HD0~HD99999 SD0~SD9999 | HSD0~HSD7999

Note: The above range of software components is the effective range in X-NET
communication mode or Ethernet communication mode. Under Modbus communication
mode, some relays cannot be read and written. See section 6-2-3 for specific available range.

32

Structure

Data register is used to store data; it includes16 bits(the higheset bit is sign bit) and32 bits.
(32 bits contains two registers, the highest bit is sign bit)

16 bits

16-bits register range is -32,768 ~ +32,767
Read and write the register data through instruction or other device such as HMI.
DO 16-bits

0/1/0/0/0/0/1]0/0/1/1]0]0]0]0]O
b15$ b0

Sign bit
0: positive 1: negative

32 bits

32 bits value is consisted of two continuous registers. The range is -2147483648 ~
2147483647. For example: (D1 D0) D1 is high16 bits, DO is low16 bits.

For 32 bits register, if the low 16-bits are appointed, such as D0, then D1 will be the high16
bits automatically. The address of low 16-bits register must be even number.

D1 16-bit DO 16-bit
High u 4 Low
0/ 1/ 00/ 0/ 010/ 0/ 1/ 1/ 0/l 0/ o]0l 0/ 1/ 0/ 0] 0] 0] 1] 0] 0] 1] 1/ 0/ 0] 0] 0] 0
b31, bo
Sign bit

0: positive 1: negative

Function

e Normal type
When write a new value in the register, the former value will be covered.
When PLC changes from RUN to STOP or STOP to RUN, the value in the register will be
cleared.

o Retentive type
When PLC changes from RUN to STOP or power off, the value in the register will be
retained.
The retentive register range cannot be changed.

33

e Special type

Special register is used to set special data, or occupied by the system.

Some special registers are initialized when PLC is power on.

Please refer to the appendix for the special register address and function.
e Used as offset (indirect appoint)

Data register can be used as offset of soft element.

Format : Dn[Dm], Xn[Dm], Yn[Dm], Mn[Dm].

Word offset: DXn[Dm] means DX[n+Dm].

The offset value only can be set as D register.

SM2
—m—{ MOV \ KO \ DO %
HN%;{ MOV \ K5 \ DO %
SMO
—1}74{ MOV ‘D10[DO]‘ D100 %

YO[DO]

()
\)

When D0=0, D100=D10, Y0 is ON;
When M2 is from OFF—ON, D0=5, D100=D15, Y5 is ON.
D10[D0]=D[10+DQ], YO[DO]=Y[0+D0].

Example

Data register D can deal with many kinds of data.
Data storage

MO
——— Mov | K10 | Do | When MO is ON, write 100 into DO.(16 bits value)

M1
——{ DMov | Kkat100 | D10 | When ML is ON, write 41100 into D11,D10 (32 bits value)

Data transfer

MO
HH MoV ‘ Do ‘ D10 ‘ When MO is ON, transfer the value of DO to D10

34

Read the timer and counter

MO
—IF— MoV | c10 | DO | when MO isON, move the value of C10 to DO.

As the set value of timer and counter

X0 When X0 is ON, TO starts to work, TO will set ON when
}—‘TMR_A‘TO‘DO‘DZ‘ _ _ _ o
DO value is equal to timer value, time unit is D2.

CNT ‘HCO‘ D4 \

X1 is ON, HCO starts to work, HCO will set ON when D4
value is equal to counter value.

2-9-1 Word consist of bits

One of the coils from X0 to X17 is ON, YO will be ON.
Programming method one:

X0 YO0
—
X1
4{ }7

-~
~

X2
Iy —

X3
Ry —

X4
YN
X5
(N y—
X6
N —
X7
Y —
X10
YR

X11
4{ }7

X12
4{ }7

X13
4{ }7

X14
4{ }7

X15
4{ }7

X16
4{ }7

X17
Iy

Programming method two: (application of word consists of bits)

35

DX0 KO Y0
—= (

2-9-2 Offset application

Application 1:
When MO is ON, the output from Y1 to Y7 will be ON one by one. DO is offset address. If
there are many output points, M can replace Y.

SMm2
— | | MOV K7 D4000 \—
MO SM13 YO[DO]
1 Il (R
| INC DO —
DO D4000
> | MOV K1 DO I
YO[DO]
(S)
Application 2:

When MO is ON, read the ID10000 value every second and store in the register starting from
D4000 (amounts is 50 registers). DO is offset address.

MO SM13
— | il | MOV ID10000 D4000[D0] |
— INC DO B

DO K50
—| | MOV Kl DO -

2-10 Flash register (FD, SFD, FS)

The FLASH registers of XG series PLC are all addressed in decimal system. The serial
numbers are shown in the corresponding table.

Series | Name Range
FLASH user data FLASH system data | Password read protection
register register FLASH register
XG1 FD FDO~FD8191 SFDO~SFD5999 FSO~FS47
SFD
XG2 FS FDO~FD65535 SFD0~SFD9999 FSO0~FS47

36

Function

e FLASH User Data Register (FD)
Used to store important data of users, can be maintained when the power is off.
This storage area can remember data even if the battery is powered down, so it can be used to
store important process parameters.

e FLASH System Data Register (SFD)
Used to store system parameters and be able to maintain the data when power off.
The storage area is a system parameter block, and users can not modify it at will.

e Password Read Protection FLASH Register (FS)
A part of the FlashROM register is used to store data soft components, which are represented
by the symbol FS. The values in the FS register can be written but can not be read, so they
can be used to protect the intellectual property rights of users.
The value of the soft element can be set arbitrarily in the FS register, but the value of the
register can not be read (always returned to 0); and it can not be compared with the register in
the host computer software, only with the constant, so the actual value of the register can not
be read.
This storage area can remember data even if the battery is powered down, so it can be used to
store important process parameters.

Note:

(1) When using MQV instruction to transmit data to FD, SFD and FS, only the rising edge is
valid, even if the driving condition is normally open/closed coil, the instruction is executed
only once.

(2) Flash registers can be written about 1,000,000 times, and each write is erased for the
whole Flash registers, which is time-consuming. Frequent writing will cause permanent
damage to Flash registers, so it is not recommended that users write frequently. Do not use
oscillating coil (e.g. SM11) as driving condition.

(3) When data is transmitted to the same Flash register several times, if the value in the source
register does not change from the previous transmission, the transmission instruction will not
be executed even if the driving condition is established again. For example, if the value in DO
is transmitted to FD100, the value in DO is 300 when the transmission instruction is executed
for the first time; if the driving condition is established for the second time, the transmission
instruction is not executed if the value in DO is still 300.

(4) In order to prevent the interference of burr signal when transmitting data to Flash registers,
it is not recommended to use coils such as SM0 and SM2 as direct driving conditions. It is
suggested that the transmission instructions be executed after the PLC power-on for a period
of time.

(5) The FS register can only be modified by setting the initial value of the software
component.

37

2-11 Constant

Data process

XG series PLC has the following 5 number systems.
e DEC: DECIMAL NUMBER
The preset number of counter and timer (constant K)
The number of Auxiliary relay M, HM; timer T, HT; counter C, HC; state S, HS; register D,
HD.
Set as the operand value and action of applied instruction (constant K)

e HEX: HEXADECIMAL NUMBER
Set as the operand value and action of applied instruction (constant H)

e BIN: BINARY NUMBER
Inside the PLC, all the numbers will be processed in binary. But when monitoring on the
device, all the binary will be transformed into HEX or DEC.

e OCT: OCTAL NUMBER
XG series PLC I/O relays are in octal. Such as [X0-7, X10-17,....X70-77].

e BCD: BINARY CODE DECIMAL
BCD uses 4 bits binary number to represent decimal number 0-9. BCD can be used in 7
segments LED and BCD output digital switch

e Other numbers (float number)
XG series PLC can calculate high precision float numbers. It is calculated in binary numbers,
and display in decimal numbers.

Display

PLC program should use K, H to process values. K means decimal numbers, H means hex
numbers. Please note the PLC input/output relay use octal address.

e Constant K
K is used to display decimal numbers. K10 means decimal number 10. It is used to set timer
and counter value, operand value of applied instruction.

e ConstantH
H is used to display hex numbers. HA means decimal number 10. It is used to set operand
value of applied instruction.

e Constant B

38

B is used to display binary numbers. B10 means decimal number 2. It is used to set operand
value of applied instruction.

2-12 Programming principle

SignP and |

P is the program sign for condition and subprogram jump.

| is the program sign for interruption (external interruption, timer interruption, high speed
counter interruption, precise time interruption...).

P and | addresses are in decimal. Please refer to the following table:

Series Name Range

XG1 P P0~P9999

XG2 P0~P9999
Sign P

P is usually used in flow; it is used together with CJ (condition jump), CALL (call

subprogram), etc.

Condition Jump CJ

M8002

| [oov_am b0 |- If coil X0 is ON, jump to the

programafter P1;

If the coil X0 is not ON, do not execute

o jump action, but run the original

MO
4; EECans program:
1000 20000 OFF

M8170

| Eary

Call the subprogram (CALL)

39

X0
- CALL ‘ P10 ‘ If X0 is ON, jump to the
- @ subprogram
If the coil is not ON, run the
original program;
B After executing the subprogram,
return to the main program;
— >
5
—

(W
UIen

-
-

weJsboidgns

SRET

i

The subprogram will start from Pn and finish with SRET. CALL Pn is used to call the
subprogram. n is an integer in the range of 0 to 9999.

Sign |

Tag I is usually used in interruption, including external interruption, time interruption etc. It
often works together with IRET (interruption return), El (enable interruption), DI (disable
interruption);

e External interruption
Accept the input signal from the special input terminals, not affected by the scan cycle.
Activate the input signal, execute the interruption subroutine.
With external interruption, PLC can dispose the signal shorter than scan cycle; So it can be
used as essential priority disposal in sequence control, or used in short time pulse control.

e Time interruption
Execute the interruption subroutine at each specified interruption loop time. Use this
interruption in the control which isdifferent from PLC’s operation cycle;

e Action sequence of input/output relays and response delay
Input
Before PLC executing the program, read all the input terminal’s ON/OFF status to the image
area. In the process of executing the program, even the input changed, the content in the input
image area will not change. However, in the next scan cycle, the changes will be read.

Output
Once all the instructions end, transfers the ON/OFF status of output Y image area to the
output lock memory area. This will be the actual output of the PLC. The output contactors
will act according to the device’s response delay time.
When use batch input/output mode, the drive time and operation cycle of input filter and
output device will also show response delay.

o Not accept narrow input pulse signal
PLC’s input ON/OFF time should be longer than its loop time. If consider input filter’s
response delay 10ms, loop time is 10ms, then ON/OFF time needs 20 ms separately. So, up

40

to 1, 000/(20+20)=25Hz input pulse can’t be processed. But, this condition could be improved
when use PLC’s special function and applied instructions (such as high speed count, input

interruption, input filter adjustment).
e Dual output (Dual coils) action

Input process

X0=ON X1=OFF

X0

—}——— ourt YO
YO

—] ——— ourt Y1
X1

— p— ourt YO0

Output process

Y0=OFF Y1=ON

As shown in the left map, please
consider the case of using the same coil
YO0 at many positions:

E.g.X0=0ON, X1=0OFF

The first YO: X0 is ON, its image area is
ON, output Y1 is also ON.

The second YO: as input X1 is OFF, the
image area is OFF.

So, the actual output is: YO=OFF,
Y1=ON.

When executing dual output (use dual coil), the after one is act in priority.

41

3 Basic Program Instructions

This chapter introduces the basic instructions and their functions.

3-1 Basic Instructions List

XG series support all the basic instructions:

Mnemonic | Function Format and Device ((;rhapt

LD Initial logical operation MO 3-2
contact type NO ! O—‘
(normally open) ‘

LDD Read the status from the XQ 3-6
contact directly 7‘ D O

LDI Initial logical operation Mo 3-2
contact type NC =]
(normally closed)

LDDI Read the normally closed 3-6
contact directly 7/@\(Qi

LDP Initial logical operation- MO 3-5
Rising edge pulse i o

LDF Initial logical operation- MO 3-5
Falling /trailing edge i o
pulse

AND Serial connection of NO MO 3-3
(normally open) contacts | [e

ANDD Read the status from the 3-6
contact directly —] %ﬁ, %Q

ANI Serial connection of NC MO 3-3
(normally closed) A e
contacts

ANDDI Read the normally closed 3-6
contact directly — %ﬁ O

ANDP Serial connection of MO 3-5
rising edge pulse i Q

ANDF Serial connection of MO 3-5
falling/trailing edge i
pulse ‘

OR Parallel connection of Iy 3-4
NO (normally open) HMO O—‘
contacts

ORD Read the status fromthe | | 1| 3-6
contact directly X(})J

—p
ORI Parallel connection of i O] 3-4

NC (normally closed)

contacts

ORDI Read the normally closed | 3-6
contact directly X0

ORP Parallel connection of } 3-5
rising edge pulse HO O—‘

ORF Parallel connection of | 3-5
falling/trailing edge mo ——
pulse

ANB Serial connection of IR Q 3-8
multiply parallel circuits HJ LJ

ORB Parallel connection of " O 3-7
multiply parallel circuits | ||

ouT Final logic operation i Yo > 3-2
type coil drive

OuUTD Output to the contact r YDO N 3-6
directly ~0

SET Set a bit device % SET ‘ YO0 3-12
permanently ON

RST Reset a bit device RST ‘ Y0 3-12
permanently OFF ’H }—‘

CNT 16-bit non-power-off | | [ONT] C0 [K8 } 3-13
retentive incremental
count

CNT_D | 16-bit power-off) [ONT_D[HCO | K8 [H 3-13
retentive decremented
count

DCNT 32-bit non-power-off | | [DCNT[Co | K8 || 3-13
retentive incremental
count

DCNT_D 32-bit power—off } [}DCNT_D‘ HCOo ‘ K8 H 3-13
retentive decremented
count

PLS Turn on a scan cycle bLS Y0 3-11
when rising edge — ‘ %

PLF Turn on a scan cycle 3-11
when falling edge H L ‘ Y0 %

MCS Connect the public serial | |— 3-9
contacts A

}7

MCR Clear the public serial . It Y0 3-9

contacts
Le =
ALT The status of the 3-10

assigned device is
inverted on every

43

operation of the

instruction

TMR Non-power-off holding 3-14
timer —] }7‘ T™MR ‘ T0 ‘ K10 ‘ KlOOH

TMR_A Power-off holding timer 3-14

—{ }7‘ TMR_A ‘ HTO ‘ K10 ‘ KlOOH

END Force the current END | 3-15
program scan to end ‘

GROUP Group 3-15

GROUPE | Group End 3-16

3-2 [LD], [LDI], [OUT]

Mnemonic and Function

Mnemonic Function Format and Operands
LD Initial logic operation Mo
(positive) contact type NO ‘

(Normally Open)
Operands:

X,Y,M,HM,SM,S,HS,T,HT,C,HC,Dn.m

LDI Initial logic operation MO
(negative) contact type NC ’ﬁ” Qﬂ

(Normally Closed)

Devices:

X,Y,M,HM,SM,S,HS, T, HT,C,HC,Dn.m
ouT Final logic operation type i Y0
(ouT) drive coil

Operands:

X, Y ,M,HM,SM,S HS T,HT,C,HC,Dn.m
Statement

e Connect the LD and LDI instructions directly to the left bus bar. It can work with ANB
and be used at the branch start.

e OUT instruction can drive the output relays, auxiliary relays, status, timers, and counters.
But this instruction can’t be used for the input relays.

44

Program

Y100

TMR TO K10 K100
S

3-3 [AND],

Vi

[ANI]

Mnemonic and Function

LD X0

OUT Y100

LDl X1

OuUT M1203

TMR TO K10 K100
LD TO

OuT Y1

Mnemonic | Function Format and Operands

AND Normal open MO

(and) contactor in series i} =
Operand: X,Y,M,HM,SM,S,HS, T ,HT,C,HC,Dn.m

ANI Normal close MO

(and contactor in series —

reverse)
Operand: X,Y,M,HM,SM,S,HS, T,HT,C,HC,Dn.m

Statements

e Use AND and ANI to connect the contactors in series. There is no limit for contactors in

series. They can be used for many times.

e Use OUT instruction through other coil is called “follow-on” output (For an example see
the program below: OUT M2 and OUT Y3). Follow-on outputcanrepeat as long as the
output order is correct. There’s no limit for the serial connected contactors and follow-on

output times.

45

Program

X2 M1
—ii 2 > LD X2

Y2 X3

— M2 AND M1
LTl OUT Y2

LD Y2
ANl X3
OUT M2
AND T1
OUT VY3

3-4[OR], [ORI]

Mnemonic and Function

Mnemonic | Function Format and Operands

OR Parallel connection |

(OR) of NO (Normally J"ﬂ S

Open) contactors
Operand: X,Y,M,HM,SM,S ,HS, T,HT,C,HC,Dn.m

ORI Parallel connection |
i >

(OR of NC (Normally
reverse) Closed) contactors

Operand: X,Y,M,HM,SM,S,HS, T,HT,C,HC,Dn.m

Statements

e Use the OR and ORI instructions for parallel connection of contactors. To connect a block
that contains more than one contactor connected in series to another circuit block in
parallel, use ORB instruction, which will be described later;

e OR and ORI start from the instruction step, parallel connect with the LD and LDI
instruction step introduced before. There is no limit for the parallel connect times.

Program

46

5 e >
o

M100

Relationship with ANB

LD ANB LD

L L

HTH b
4{ }7

| oR

Li After ANB
4“7
OR
L After ANB

LD X5

OR X6

OR M11

OUT mo Y6

LD}, Y6 O—‘
ND M4
R M12

ANl X7

OR M13

OUT M100

The parallel connection with OR, ORI
instructions should connect with LD,
LDl instructions in principle. But behind
the ANB instruction, it’s still ok to add a
LD or LDI instruction.

3-5 [LDP], [LDF], [ANDP], [ANDF], [ORP], [ORF]

Mnemonic and Function

Mnemonic Function

Format and Operands

LDP

(LoaD Pulse) | edge pulse

Initial logical operation-Rising

MO

-

X,Y,M,HM,SM,S,HS, T,HT,C,HC,Dn.m

LDF Initial logical operation
(LoaD Falling | Falling/trailing edge pulse
pulse)

N |

X,Y,M,HM,SM,S,HS, T, HT,C,HC,Dn.m

47

ANDP Serial connection of Rising edge MO
(AND Pulse) | pulse ’—H—(T

X,Y,M,HM,SM,S,HS, T,HT,C,HC,Dn.m

ANDF Serial connection of

MO
(AND Falling | Falling/trailing edge pulse i
pulse)

X,Y,M,HM,SM,S,HS, T,HT,C,HC,Dn.m

ORP Parallel connection of Rising edge
(OR Pulse) pulse ﬁwﬂ
I

X,Y,M,HM,SM,S,HS, T,HT,C,HC,Dn.m

ORF Parallel connection of
(OR Falling Falling/trailing edge pulse 'V@
pulse) I
X,Y,M,HM,SM,S HS, T,HT,C,HC,Dn.m
Statements

® L DP, ANDP, ORP will be ON for one scanning period when the signal rising pulse is coming
(OFF>O0N)

® |LDF, ANDF, ORF will be ON for one scanning period when the signal falling pulse is
coming (ON->OFF)

Program
Xﬂ5 M13 LDP X5
NG ORP X6
" ouT M13
SMO0 X7 LD M8000
— M1 D ANDP X7
ouT M15

3-6 [LDD], [LDDI], [ANDD], [ANDDI], [ORD], [ORDI], [OUTD]

Mnemonic and Function 48

Mnemonic Function Format and Operands
LDD Read the status from X0
the contact directly _| D ’—Q
Devices: X
LDDI Read the normally X0
closed contact directly _P ©
Devices: X
ANDD Read the status from X0
the contact directly — |_|D’—Q
Devices: X
ANDDI Read the normally X0
closed contact directly _| I_,M—Q
Devices: X
ORD Read the status from || >
the contact directly _|’;‘|’_
Devices: X
ORDI Read the normally || >
closed contact directly XO:
Devices: X
OuUTD Output to the contact - YDO N
directly ~ 0
Devices: Y
Statement

The function of LDD, ANDD, ORD instructions are similar to LD, AND, OR; LDDI, ANDDI,
ORDI instructions are similar to LDI, ANDI, ORI; but if the operand is X, the LDD, ANDD,
ORD commands read the signal from the terminals directly.

OUTD and OUT are output instructions. OUTD will output immediately when the condition

is satisfied, needn't wait for the next scan cycle.

Program
X0) 1
LDD X0
| bt { 0 LDDI X2
=l ORD X2
17 ANB
OUTD YO

49

3-7 [ORB]

Mnemonic and Function

Mnemonic Function Format and Devices

ORB Parallel connect the [I—
(OR Block) serial circuits —

Devices: none

Statements

Two or more contactors are called "serial block”. If parallel connect the serial block, use LD,
LDl at the branch start point, use ORB at the branch end point;

As the ANB instruction, an ORB instruction is an independent instruction which is not
associated with any soft component.

There are no limits for parallel circuits’quantity when using ORB for every circuit.

Program

Recommended good programming method:

Non-preferred programming method:

LD X0 D -
AND X1

AND X1
LD X2
AND X3 LD X2

AND X3
ORB

LD X4
LD X4 AND X5
AND X5

ORB
ORB ORB
ouT Y2 oUT Y2

Mnemonic and Function

[Mnemonic | Function | Format and Devices

50

ANB Serial —

(And connection of ﬁJ LJ O—‘
Block) parallel
circuits Devices: none

Use ANB to serial connects two parallel circuits. Use LD, LDI at the brach start point; use
ANB at the branch end point.
There are no limits for ANB instruction using times.

Program
%0
1 LD X0
OR X1
— LD X2
AME ™ Parallel AND X3
circuit LDI X4
_§|€? AND X5
':'th inztruction before ANE ORB
0OF instruction after ANE XEIB X6
OR X7
ouT Y20
3-9 [MCS], [MCR]
Mnemonic and Function
Mnemonic | Function Format and Devices
MCS The start of - | C YO >
(Master new bus line —
control) =
Devices: None
MCR Reset the bus @ @ @
; [l
(Master line %}—{ B \ 0 \ X \ X \ X \ 0 \ Vi \
control
Reset) Devices: None
Statements

o After the execution of an MCS instruction, the bus line (LD, LDI) moves to a point after

51

the MCS instruction. An MCR instruction resets this to the original bus line.

e MCS, MCR instructions should use in pair.

e The bus line can be nesting. Use MCS, MCR instructions between MCS, MCR
instructions. The nesting level increase with the using of MCS instruction. The max
nesting level is ten. When executing MCR instruction, go back to the last level of bus line.

e When use flow program, bus line management could only be used in the same flow.
When the flow ends, it must go back to the main bus line.

Note: The MCS and MCR instructions can not be written directly in the ladder diagram of
XG series PLC programming software. They can be constructed by horizontal and vertical
lines.

Program
X1 X2 LD X1
MCS
M1 M3
— YL

{l Y LD X2
bﬂz C ouT YO0
LD M1

MCS

LD M3
ouT Y1
LD M2
ouT Y2
MCR
MCR

3-10 [ALT]

Mnemonic and Function

Mnemonic Function Format and Devices

ALT Alternate the coil |

(Alternate) L L AT | Mo

Coil:
X,Y,M,HM,SM,S,HS, T,HT,C,HC,Dn.m

Statements

The status of the coil is reversed after using ALT (ON changes to OFF, OFF changes to ON).

52

Program

LDP M100
M100 ‘
B AT \ MO % ALT MO
LD MO

MO ouT Y0
‘ @' LDI MO
MO ouT Y1

3-11 [PLS], [PLF]

Mnemonic and Function

Mnemonic | Function Format and Devices

PLS Turn on a scan

(Rising cycle when e B D

Pulse) Rising edge

Operand:
X,Y,M,HM,SM,S,HS, T,HT,C,HC,Dn.m

PLF Turn on a scan PLE Y0
(Falling cycle when I— |]

Pulse) Falling edge

Operand:
X,Y,M,HM,SM,S,HS, T,HT,C,HC,Dn.m

Statements

For using PLS instruction: soft component Y and M will act during one scanning period after
the drive is ON.

For using PLF instruction: soft component Y and M will act during one scanning period after
the drive is OFF.

Program

53

on% PLS | Mo [— Lo)I\;%
P N N LM
R N T o S
M1

———————— RST | Yo |— oM

|
M1 | | \‘->']L|<Scan éIC'L \‘ ,ILI

Y0\‘| ! \‘I !

3-12 [SET], [RST]

Mnemonic and Function

Mnemonic | Function Format and Devices
SET Set a bit
(Set) device e SET | Yo |
permanently
ON Operand: X,Y,M,HM,SM,S,HS,T,HT,C,HC,Dn.m
RST Reset a bit
(Reset) device b RST | Yo |
permanently
OFF Operand: X,Y,M,HM,SM,S,HS, T,HT,C,HC,Dn.m

Statements

In the following program, YO will keep ON even X10 turns OFF after turning ON. YO will
not ON even X11 turns OFF after turning ON. This is the same to S and M.

SET and RST can be used for many times for the same soft component. Any order is allowed,
but the last one is effective.

RST can be used to reset the counter, timer and contactor.

When using SET or RST, it cannot use the same soft component with OUT.

Program

54

X1 Yo
— (S)
X1 YO
— (R)
X1 M50
— (s)
M50
4)61 (R\
3 \ 7
X1 SO
Y (s)
X1 S0
‘ (R)
X1
———{TMR T250 K10 K10}
X1 T250
— (R)
X10
X11
YO0

LD
SET
LD
RST
LD
SET
LD
RST
LD
SET
LD
RST
LD
TMR
LD
RST

X10
YO0
X11
YO0
X12
M50
X13
M50
X14
SO
X15
SO
X16
T250 K10 K10
X17
T250

3-13 [CNT],[CNT_D],[DCNT],[DCNT _D],[RST]for the counters

Mnemonic and Function

Mnemonic Function Format and devices
CNT 16 bits non power-off retentive
Output increase count, the drive of count } | CNT
il
col Operand: K, D
CNT_D 16 bits power-off retentive
Output decrease count, the drive of } | |CNT_D[HCO | K8 H
il
count col Operand: K, D
DCNT 32 bits non power-off retentive | ‘
Output increase count, the drive of count | | A (DCNT] C0 | K8 H
coil Operand: K, D

55

Output decrease count, the drive of | -

count coil Operand: K, D
RST Reset the output coil, clear the } Il RST
Reset current count value

Operand: C, HC, HSC

Internal counter programming

CO0 increase counts the X11 OFF
to ON times. When CO reaches
X11 K10, CO will become OFF to ON.

— }—{ CNT ‘ co ‘ K10 % When X11 becomes OFF to ON,

%C? (YO) the CO current value will keep

\
increasing, and the CO coil will
still be ON. When X10 is ON,
reset the CO coil.

X10

Power-off retentive counter will keep the current value and counter coil status when the
power is off.

High speed counter programming

MO
—{ |—————1 oNT | Hsco | K10 |+
Y0

H%CO

()
[LS
it

Increase count the OFF to ON times of MO.
When the count value reaches set value (value of K or D), the count coil will be ON.
When M1 is ON, the count coil of HSCO reset, the current value becomes 0.

56

3-14 [TMR], [TMR_A] for timers

Mnemonic and Function

Mnemonic | Function Format and devices

TMR Non power-off retentive 100ms

output timer, the drive of coil }—{ 1 MR | T0 | Ko | K0 |
operand: K, D

TMR Non power-off retentive 10ms

output timer, the drive of coil —fF—— ™R~ | 10 | ko [o |-
operand: K, D

TMR Non power-off retentive 1ms

output timer, the drive of coil — }—{ MR ‘ To ‘ K10 ‘ K1 F
operand: K, D

TMR_A Power-off retentive 100ms timer,

output the drive of coil — { TMR_A ‘ HTO ‘ K10 ‘ K100 ’»
operand: K, D

TMR_A Power-off retentive 10ms timer,

output the drive of coil —f b—— ™RrA | Hro | ko [kio |-
operand: K, D

TMR_A Power-off retentive 1ms timer,

output the drive of coil — TMRA ‘ HTO ‘ K10 ‘ K1 F
operand: C, HC, HSC

Internal timer programming

T
|1

MO
—] }—{ TMR ‘ TO ‘KlO‘KlO}—
0

M1
\

YO0

When MO is ON, TO starts to
timing. When TO reaches K10,
TO coil is ON. Then TO
continues timing. When M1 is
ON, reset the TO.

Power-off retentive timer will keep the current value and counter coil status when the power

is off.

57

3-15 [END]

Mnemonic and Function

Mnemonic | Function Format and Devices: None
END Force the \
(END) current S
program scan
toend Devices: None
Statements

Input processing

Program steps

000 LD X0
88; OUT YO
END

/

Output processing

PLC repeatedly carries on input disposal, program executing and output disposal. If write
END instruction at the end of the program, then the instructions behind END instruction
won’t be executed. If there’s no END instruction in the program, the PLC executes the end
step and then repeats executing the program from step 0.

When debug, insert END in each program segment to check out each program’s action.

Then, after confirming the correction of preceding block’s action, delete END instruction.
Besides, the first execution of RUN begins with END instruction.

When executing END instruction, refresh monitor timer. (Check if scan cycle is a long timer.)

58

3-16 [GROUP], [GROUPE]

Mnemonic and Function

Mnemonic | Function Format and Device

GROUP GROUP

Devices: None

GROUPE | GROUP END

Devices: None

Statements

GROUP and GROUPE should use in pairs.

GROUP and GROUPE don't have practical meaning; they are used to optimize the program
structure. So, add or delete these instructions doesn't affect the program's running;

The using method of GROUP and GROUPE is similar with flow instructions; enter GROUP
instruction at the beginning of group part; enter GROUPE instruction at the end of group part.

Generally, GROUP and GROUPE

I‘VI‘O instruction can be programmed according
. | MOV K10 DO }— to the group's function. Meantime, the
SMO TO

programmed instructions can be FOLDED

| | (R)
T (R)

or UNFOLDED. To a redundant project,

these two instructions are quite useful.

3-17 Programming notes

Contactor structure and steps

Even in the sequencial control circuit with the same function, it’s also available to simplify
the program and shorten the program steps according to the contactors’ structure. General
programming principle is: (a) write the circuit with many serial contacts on the top; (b) write
the circuit with many parallel contactors in the left.

Program’s executing sequence
Handle the sequencial control program by [From top to bottom] and [From left to right]

Sequencial control instructions also encode following this procedure.

Dual output dual coil’s activation and the solution

59

If carry on coil’s dual output (dual coil) in the sequencial control program, then the last action

iS prior.

Dual output (dual coil) doesn’t go against the input rule. But as the preceding action is very

complicate, please modify the program as in the following example.

X0

X3

e

x4
i Yo >—

X2

5

—)

e
X3 X4
4){(0 X2 -

5

X4
R
w

4{
4I\{/Il

There are other methods. E.g. jump instructions or flow instructions.

60

4 Applied Instructions

In this chapter, we describe applied instruction’s function of XG series PLC.

4-1 Applied Instructions List

Mnemonic Function Ladder chart Chapter
Program Flow
cJ Condition jump — % a \ Pn \ 4-3-1
CALL | Call subroutine H% CALL | Pn | 4-3-2
SRET Subroutine return 4-3-2
STL | Flow start 4-3-3
STLE | Flowend 4-3-3
Open the assigned
SET flow, close the current | [— % SET \ Sn \ 4-3-3
flow
Open the assigned
ST flow, not close the — % ST \ Sn \ 4-3-3
current flow
FOR ISot(z;\'[)t a FOR-NEXT | FOR ‘ S ‘ 4-3-4
NEXT :Eor;%of a FOR-NEXT 4-3-4
FEND | Main program END 4-35
END Program END END 4-3-5
Data Compare
LD= I(_S[;)actlvates if (S1) = o= [s | s | 4-4-1
LD> I(_S[;)actlvates if (S1) > % D= ‘ 1 ‘ 5 ‘ 4-4-1
LD activates if (S1) a1 o "
LD< —< (82) —‘ LD< ‘ ‘ ‘ 4-4-1
LD activates if (S1)
LD<> LD<> S S2 4-4-1
! [w [=
LD<= I(_SDZ)actlvates if(S1) < | <= | st | s2 | 4-4-1
LD>— I(_S[;)actlvates if(S1) > [o>= | st | s | 4-4-1
AND—= il\(lSDZ?ctlvates if(S1) HH AND— ‘ 51 ‘ © ‘ 4-4-2
AND> i’\(lg 2;1 ctivates if(S1) — %{ AND> \ S1 \ S2 \ 4-4-2

61

AND< il\(ISDZ?ctivates if(S1) HH AND< ‘ o1 ‘ - ‘ 449
AND< > :J(\Islg)activates if(S1) H}—{ AND<> ‘ a1 ‘ 2 ‘ 4-4-2
AND< — él(\lslz)activates if(S1) HH AND<— | st ‘ < ‘ 4-4-2
AND> = él(\lslg)activates if(S1) H%{ AND— ‘ o1 ‘ 2 ‘ 4-4-2
OR= E)SFg)activates if(S1)= ok [st | s | 4-4-3
OR> g;)activates if(S1)> 4‘ OR> ‘ . ‘ > ‘ 4-4-3
OR< g;)activates if(S1)< 4‘ OR= ‘ 1 ‘ 2 ‘ 4-4-3
OR< > E)SFé)activates if(S1) # % OR== ‘ 1 ‘ o ‘ 4-43
OR< — gl;)activates if(S1) < % OR—= ‘ s ‘ 52 ‘ 4-4-3
OR>— (Oslg)activates if(S1) > % OR>= ‘ sl ‘ 52 ‘ 4-4-3
Data Move
CMP | Compare the data —r{comp st [s [b | 4-5-1
Compare the data in -
ZCP certain area }—H—' zcp [st [s2 | s | p | 4-5.2
MOV | Move —i—{mov s [b 4-5-3
BMOV | Block move —i—{emov| s [» [o 4-5-4
PMOV glrggiferthe Data }HH PMOV‘ S ‘ D ‘ R ‘ 4-5.5
Multi-point: t
FMOV m(L)JV(; poInts repea }—H—‘ MoV [s [0 [o] 4-5-6
EMOV | Float number move }HH EMOV\ S \ D \ 4-5-7
FWRT | Flash ROM written | —+—{ FWRT[5 [D | 4-5-8
MSET | Zone set }—H—' MSET | s1 | s2 | 4-5.9
ZRST | Zone reset }HH ZRST | s1 | s2 | 4-5-10
SWAP ISEJ"\‘,’:‘E;?: highand 11, 4-5-11
XCH Exchange two values }H H XCH‘ 01\ = ‘ 4512
Data Operation
ADD | Addition }—H—' ADD | st [s2 [b 4-6-1
sSuB Subtraction }—H—' suB | st | s2| D | 4-6-2
MUL Multiplication }HH MUL‘ 31\ 2 ‘ D ‘ 4-6-3
DIV Division }—H—' plv | s1 | s2| D | 4-6-4

62

INC Increment }H 4-6-5
DEC Decrement }H n 465
MEAN | Mean -~ MEAN| s | D | n | 4-6-6
WAND | Word And —— WAND | s1| 52| D | 4-6-7
WOR | Word OR —i— WoR| st [s2] D | 4-6-7
WXOR | Word eXD3lusive OR | |+ WXOR | S | s2| D | 4-6-7
CML | Compliment }—H—' oL [s [b | 4-6-8
e o {nes [o | 469
Data Shift
SHL | Arithmetic Shift Left | i si. | 0 | o | 4-7-1
SHR | Arithmetic Shift Right | - stk | o [o | 4-7-1
LsL Logic shift left }HH st o [n 4-7-2
LSR Logic shift right }HH LSR‘ 5 ‘ . ‘ 4-7-2
ROL Rotation shift left }—H—‘ROL‘ o[n | 4-7-3
ROR ROtatIOI’I Shlftrlght }—{}_4 ROR‘ D ‘ n ‘ 4_7_3
SFTL | Bit shift left s s D [m | n| 4-7-4
SFTR | Bit shift right —{sR[s [D[m || 475
WSEL Word shift left }HH WSFL ‘ S ‘ D ‘ n ‘ n2 ‘ 4-7-6
wsFR | Word shiftright i wsrR [s [D [m[n2] 477
Data Convert
Single word integer
WTD converts to double }HH WTD\ S \ D \ 4-8-1
word integer
32 bits integer to64
DWTD bits integer —i—{owro [s [o] 4-8-1
32 bits integer to64
BDWTD | bits integer batch }HH BDWTD‘ s ‘ D ‘ n ‘ 4-8-2
conversion
16 bits integer
FLT converts to float point }HH FLT| s | o] 4-8-3
32 bits integer
DFLT | converts to float point ——{orr] s [o | 4-8-3
64 bits integer
FLTD | converts to float point [s o] 4-8-3
32 bits integer to
DFLTD | double precision 4-8-4
floating point }HH{ orTD| s [0 |

63

64 bits integer to

QFLTD | double precision 4-8-4
floating point }HH{ o] s [o |
Float point converts
INT to integer }—H—‘ INT [s [D | 4-8-5
Double - precision
DINTD | floating point to32 4-8-6
bits integer }HH ono| s [o]
Double - precision
QINTD | floating point to64 }HH N[s [D | 4-8-6
bits integer
Single precision
ECON floating point to 4-8-7
double precision }HH ECON | s | D |
floating point
Single precision
floating point to
BECON | double precision 4-8-8
floating point batch }HH BECON | S [D | n |
conversion
BCD converts to
BIN binary }—H—' BIN‘ S ‘ D ‘ 4-8-9
Binary converts to
BCD BCD }HH BCD‘ s ‘ D ‘ 4-8-10
Hex. converts to
I A —i—{asct| s[D[n 4-8-11
ASCII converts to
Hex.
HEX }—H—'HEX‘ S ‘ D ‘ n ‘ 4-8-12
Coding
DECO }—H—' DECO| s | D | n | 4-8-13
enco | High bit coding ——[enco[s [o [n | 4-8-14
EncoL | -OW bit coding }HH ENCOL | S [D | n | 4-8-15
GRY Binary to Gray code }—H—'GRY‘ S ‘ 5 ‘ 4-8-16
GBIN Gray code to binary }—H—‘GBIN‘ s ‘ 5 ‘ 4-8-17
Float Point Operation
ECMP | Float compare }—H—' ECMP | S1|S2 | D | 4-9-1
EZCP Float Zone compare HH EZCP‘ Sl‘ 52 ‘ b1 ‘ b ‘ 4-9-2
EADD | FloatAdd ——{eaon| 51| s2 [D | 4-9-3
Esug | Float Subtract }HH{ ESUB | s1| s2 | D | 4-9-4
EMUL Float Multiplication 4-9-5

}—H—'EMUL‘ 51\ s2 \ D \

64

Float division

EDIV }—H—' EDIV‘ 51\ s2 \ D \ 4-9-6
ESOR Float Square Root }HH ESQR‘ S ‘ 5 ‘ 4-9-7
SIN Sine i sN| s [D] 4-9-8
cos | Cosine }—H—' cos| s | b | 4-9-9
TAN | Tangent - [Tan] s [o] 4-9-10
AsiN | FloatSine [asn] s [b | 4-9-11
Acos | FloatCosine [acos| s | 4-9-12
ATAN Float Tangent }H }—4ATAN‘ S ‘ 5 ‘ 4-9-13

Clock Operation

TRD Reafd RTC data }H 4-10-1

TWR Write RTC data }H 4-10-2
Accurate clock BD

MoV board data read }—m—{ MOV‘ > ‘ D ‘ 4-10-3
Accurate clock BD .

TO board data write o ‘ > ‘ 32 ‘ >3 ‘ P ‘ 4-10-4
TaDD | Clock dataadd ——{TADD[s1] 52 [D | 4-105
TSUB | Clock data sub ——{TsuB | s1 [s2] D | 4-10-6

Convert hour, minute,
HTOS and second data to | HTOS | s | D | 4-10-7
seconds
Convert second data
STOH | to hours, minutes, and ir—|stoH| s | D | 4-10-8
seconds
Time (hours, minutes,
TEMP | seconds) compare }HH TowP | s1[s2[ss[s D] | 4109
pacmp | D2te eer month, ' Foacwp [51 52 535 [D] | 41010

day) compare

4-2 Reading Method of Applied Instructions

In this manual, the applied instructions are described in the following manner.

1)Summary
ADDITION [ADD]
16 bits ADD 32 bits DADD
Execution Normally ON/OFF, Suitable XG1, XG2
condition Rising/Falling edge Models
Hardware - Software -
reguirement reguirement

65

2)Operands

Operands | Function Data Type

S1 Specify the data or register address 16 bits/32 bits, BIN
S2 Specify the data or register address 16 bits/32 bits, BIN
D Specify the register to store the sum result 16 bits/32 bits, BIN

3)Suitable Soft Components

Operan Word soft elements Bit soft elements
ds System Consta | Module System
nt
DIF|T|C|D|D| D|D KH I Q| X|Y M|S|T|C| Dn
DID|ID|X|Y|M|S D| D m
S1 o o | 0o | 0| 0o | @ o | o °
S2 o o | 0o | 0| 0o | @ o | o °
D o o | o | o ° o | o

*Note: D includes D, HD. TD includes TD, HTD. CD includes CD, HCD, HSCD, HSD. DM
includes DM, DHM. DS includes DS, DHS. M includes M, HM, SM. S includes Sand HS. T
includes T and HT. C includes C and HC.

Description

<16 bits instruction>

—

—

X0

X0

CONICORNCD

ADD | D10 | D12 | DU | (p10)+ (DI2)— (DI4)

<32 bits instruction>

G & (@)

DADD ‘ D10 ‘ D12 ‘ D14 ‘ (D11D10) + (D13D12) — (D15D14)

Two source data make binary addition and the result data store in object address.

The highest bit of each data is positive (0) and negative (1) sign bit. These data will make
addition operation through algebra. Such as 5 + (-8) = -3.

If the result of a calculations is “0”, the “0° flag acts. If the result exceeds 323,767(16 bits
operation) or 2,147,483,648 (32 bits operation), the carry flag acts. (refer to the next page). If
the result exceeds -323,768 (16 bits operation) or -2,147,483,648 (32 bits operation), the
borrow flag acts (Refer to the next page).

When carry on32 bits operation, lowl6 bits of 32-bit register are assigned, the register
address close to the low16 bits register will be assigned to high16 bits of 32-bit register. Even
number is recommended for the low16 bits register address.

The source and object can be same register address.

In the above example, when X0 is ON, the addition operation will be excuted in each
scanning period.

66

Related flag

Flag Name Function
ON: the calculate result is zero

SM20 Zero OFF: the calculate result is not zero
ON: the calculate result is over 32767(16bits) or
2147483647(32bits)

SM21 Borrow | OFF: the calculate result is not over 32767(16bits) or
2147483647 (32bits)
ON: the calculate result is over 32767(16bits) or
2147483647(32bits)

SM22 Carry OFF: the calculate result is not over 32767(16bits) or
2147483647(32bits)

Notes

® The assignment of the data

The data register of XG series PLC is a single word (16 bits) data register, single word data
only occupy one register which is used to single word instruction. The process range is
decimal —327,68~327,67, or hex 0000~FFFF.

Single word object instruction D(NUM)

| Instruction | DINUM) | —

Double words (32 bits) occupy two data registers; the two registers’ address is continuous.
The process range is: decimal -214,748,364,8~214,748,364,7 or hex 00000000~FFFFFFFF.

Double word object instruction D(NUM+1) D(NUM)
| Instruction | pvum) | — | Object | Object |

® The way to represent 32 bits instruction

Add letter “D” beforel6 bits instruction to represent 32 bits instruction.
For example:

ADD DO D2 D4 16 bits instruction

DADD D10 D12 D14 32 bits instruction

> 1: It shows the flag bit following the instruction action.

2 ('s-)Source operand which won’t change with instruction working

X3! Destinate operand which will change with instruction working

»¢4: It introduces the instruction’s basic action, using way, applied example, extend function,
note items and so on.

67

4-3 Program Flow Instructions

Mnemonic Instruction’s name Chapter
CJ Condition Jump 4-3-1
CALL Call subroutine 4-3-2
SRET Subroutine return 4-3-2
STL Flow start 4-3-3
STLE Flow end 4-3-3
SET Open the assigned flow, close the current flow (flow 4-3-3
jump)
ST Open the assigned flow, not close the current flow 4-33
(Open the new flow)
FOR Start of a FOR-NEXT loop 4-3-4
NEXT End of a FOR-NEXT loop 4-3-4
FEND First End 4-3-5
END Program End 4-3-5

4-3-1 Condition Jump [CJ]

1)Summary

As the instruction to execute part of the program, CJ shortens the operation cycle and avoids

using the dual coil

Condition Jump [CJ]

16 bits CJ 32 bits -
Execution Normally ON/OFF coil Suitable XG1, XG2
condition Models
Hardware - Software -
requirement requirement

2)Operands
Operands | Function Data Type
Pn Jump to the target (with pointer Nr.) P Pointer's Nr.

(P0~P9999)

3)Suitable Soft Components

Others

Pointer

P I

Description

In the below graph, if X0 is ON, jump from the first step to the next step behind P6 tag. If X0

is OFF, do not execute the jump instruction;

68

X0 —
A CJ] P6
X1 YO0
A ()
X2 T246
)‘(‘3 (R)
—— ——{ TMR T246 K1000 K10 |
X4
——F— MOV K3 DO |
<«
X0
Iy cJ P7 —
X5 YO0
A ()
X6 T246
i (R) «

>

In the left graph, YO becomes to be
dual coil output, but when X0=0OFF, X1
activates; when X0=0ON, X5 activates
CJ can’t jump from one STL to another
STL;

After driving timer TO~T575,
HTO~HT795 and HSCO~HSC30, if
executes CJ, continue working, the
output activates.

The Tag must be match when using CJ
instruction.

4-3-2 Call subroutine [CALL] and Subroutine return [SRET]

1)Summary

Call the programs which need to be executed together, decrease the program's steps;

Subroutine Call [CALL]

16 bits CALL 32 bits -
Execution condition Normally Suitable Models XG1, XG2
ON/OFF,
Rising/Falling
edge
Hardware requirement Software requirement | -
Subroutine Return [SRET]
16 bits SRET 32 bits -
Execution condition - Suitable Models XG1, XG2
Hardware requirement - Software requirement | -
2)Operands
Operands | Function Data Type
Pn Jump to the target (with pointer No.) P Pointer's No.
(P0~P9999)

3) Suitable Soft Components

Others Pointer
P |
[]
Description

69

- M CALL

| P10 | z
=N
=)

D
S 3
]
P10
4{

i

6w6
aunnoigns

SRET

i

END

® |[f X0= ON, execute the call instruction and jump to P10. After executing the subroutine,
return the original step via SRET instruction.

® Program the tag with FEND instruction (will describe this instruction later)

® In the subroutine 9 times call is allowed, so totally there can be 10 nestings.

® When calling the subprogram, all the timer, OUT, PLS, PLF of the main program will keep
the status.

® All the OUT, PLS, PLF, timer of subprogram will keep the status when subprogram returning.

® Do not write pulse, counter or timer inside the subprogram which cannot be completed in one

scan period.

Subprogram executing diagram:

Y_TL| ol | o |
1l —

>
— I—O Main program
:}

f—{] -

O 7 -
=D
 e—

Y SRET

>

Subprogram

Y
|

70

If X0=ON, the program executes as the arrow.
If X0=OFF, the CALL instruction will not work; only the main program works.
The notes to write the subprogram:
Please programming the tag after FEND. Pn is the start of subprogram; SRET is the end of
subprogram. CALL Pn is used to call the subprogram. The range of n is 0 to 9999.

The subprogram calling can simplify the programming. If the program will be used in many
places, make the program in subprogram and call it.

4-3-3 Flow [SET], [ST], [STL], [STLE]

1)Summary

Instructions to specify the start, end, open, close of a flow;

Open the specified flow, close the local flow [SET]

16 bits SET 32 hits -
Execution Normally ON/OFF, Suitable XG1, XG2
condition Rising/Falling edge Models
Hardware - Software -
requirement requirement
Open the specified flow, not close the local flow [ST]
16 bits ST 32 hits -
Execution Normally ON/OFF, Suitable XG1, XG2
condition Rising/Falling edge Models
Hardware - Software -
requirement requirement
Flow starts [STL]
16 bits STL 32 bits -
Execution - Suitable XG1, XG2
condition Models
Hardware - Software -
requirement requirement
Flow ends [STLE]
16 bits STLE 32 hits -
Execution - Suitable XG1, XG2
condition Models
Hardware - Software -
reguirement requirement

2)Operands
Operands | Function Data Type
Sn Jump to the target flow S Flow No.

3)Suitable Soft Components

Operan Word soft elements Bit soft elements
ds System Consta | Module System
nt
DIF |T |C D |D|D KH | Q| X|Y M|S|T|C| Dn
D|D|D |X |Y |M D| D m
Sn °

71

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M,HM,SM; S includes S;HS; T
includes T,HT; C includes C, HC.

Description

STL and STLE should be used in pairs. STL represents the start of a flow; STLE represents
the end of a flow.

Every flow is independent. They cannot be nesting. There is no need to write the flow as the
order SO, S1, S2... you can make the order. For example, executing S10, then S5, SO.
After executing of SET Sxxx instruction, the flow specified by these instructions is ON.
After executing RST Sxxx instruction, the specified flow is OFF.

In flow SO, SET S1 close the current flow SO, open flow S1.

In flow SO, ST S2 open the flow S2, but don’t close flow SO.
When flow turns from ON to be OFF, reset OUT, PLS, PLF, not accumulate timer etc. in the
flow.

ST instruction is usually used when a program needs to run many flows at the same time.
After executing SET Sxxx instruction and jump to the next flow, the pulse instructions in the
former flow will be closed. (including one-segment, multi-segment, relative or absolute,
return to the origin)

72

ZET 3l

After executing SET S1, close SO,
open S1.

2T o

¢

Example

J

After executing ST S2, open S2,
not close SO.

Example 1: the flows run in branch then merge in one flow.

Program diagram:

SO start

/

.

S10 start S20 start
S11 start S21 start
S12 start S22 start

\/

S30 start

73

11 i ™
110 '«.Sz'
3TL =20
0 510
| {3
320
(S\
3TL =10
310
————{THME TO K50 K100 |-
0 11
| a3l
STLE
STL =11
311
- 1 +—{TME T1 K50 K100 |-
T1 31z
1} {3
STLE
STL 312
312
—— 1 ——{TME T2 K50 K00
T2 L1
| {8
312
(R
STLE
STL 220
320
—— ——— TME T0 K50 K100 |-
Ta 371
Il {3
STLE
STL 321
3321
— TR T1 K50 K100 |-
T1 332
I | {3
STLE
323
- J—[TWME T3 El0 Ei00 M
TS 12
I =
322
[STIE] ‘R
230
NP MY {5
330 Il
|| { R}
M2
——— ——{TMRE T6 K10 Kil00 H
330
Té
|| (R}
STLE

The program explanation:
When SM2 is ON, set ON flow S0. When
MO is ON, set ON flow S10 and S20.

In S10 branch, it runs S10, S11 and S12. Set
on M1 means the S10 branch is finished.

In S20 branch, it runs S20, S21 and S22. Set
on M2 means the S20 branch is finished.

When both branch S10 and S20 end, set on
S30. When S30 end, reset S30.

74

Example 2: flow nesting. When SO is running for a while, S1 and S2 start to run; the running
status of S1 is kept. When SO is running for certain time, closes SO and force close S1 and S2.

MO <0
‘T\ (s)
S0
I | ZRST S0 sl |
STL SO
‘S‘O M1
\H (s)
SMO000
|| [TMR TO K50 K100 %
4{TMR T4 K1000 Kloo‘—
To
H } ST si F
To ‘
N | TMR T3 K10 K100 |
T3
4| | ST s2]
T4 <0
W (R)

s1
|| | TMR T1 K200 K100 ||
il (R)

s2
|| | TMR T2 K400 K100 |—
W s2
Ii (R)

75

4-3-4 [FOR] and [NEXT]

1)Summary
Loop execute the program between FOR and NEXT with the specified times;

Loop starts [FOR]

16 bits FOR 32 bits -
Execution Rising/Falling edge Suitable Models | XG1, XG2
condition
Hardware - Software -
requirement requirement
Loop ends [NEXT]
16 bits NEXT 32 bits -
Execution Normally ON/OFF, Suitable Models | XG1, XG2
condition Rising/Falling edge
Hardware - Software -
requirement requirement

2)Operands
Operands | Function Data Type
S Program’s loop times between FOR and NEXT | 16 bits, BIN

3)Suitable Soft Components

Operan Word soft elements Bit soft elements
ds System Consta | Module System
nt
DIF |T |C |D |D |D |D KMH | Q| X|Y|M|S|T|C| Dn
D|D|D (X |Y |M]S D| D m
Sn ° °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM; Sincludes S, HS; T
includes T, HT; C includes C, HC.

Description

FOR, NEXT instructions must be programmed as a pair. Nesting is allowed, and the nesting
level is 8.

The program after NEXT will not be executed unless the program between FOR and NEXT is
executed for specified times.

Between FOR and NEXT, LDP, LDF instructions are effective for one time. Every time when
MO turns from OFF to ON, and M1 turns from OFF to ON, [A] loop is executed 5>6=30
times.

Every time if MO turns from OFF to ON and M3 is ON, [B] loop is executed 5>%7=35 times.

If there are many loop times, the scan cycle will be prolonged. Monitor timer error may occur,
please note this.

If NEXT is before FOR, or no NEXT, or NEXT is behind FEND, END, or FOR and NEXT
number is not equal, an error will occur.

76

Between FOR~NEXT, CJ nesting is not allowed. FOR~NEXT must be in pairs in one STL.

")
—ng{ FOR \ K5 \

FOR \ K6 \

INC \ DO ‘[A]

M3 [C]
FOR \ K7 \

INC \ D1 ‘[B]

Example 1: when MO is ON, the FOR NEXT starts to sort the numbers in the range of D1 to
D20 from small to large. D21 is offset value. If there are many sortings in the program,
please use C language to save the programming time and scanning time.

SM2
| | | MOV | K19 | DO |—
MO
i FOR| DO [
MOV | KO | D21
SMO
i
D1[D21 D2[D21
[]{ S o1 { XCH \ D1[D21]‘D2[D21]%
NEXT
NEXT)
LD SM2 /ISM2 is initial ON coil
MOV K19 DO [fthe times of FOR loop
LD MO /IMO to trigger the FOR loop
MCS I
FOR DO /INesting FOR loop, the loop times is DO
MOV KO D21 Ilthe offset starts from O
LD SMO //SMO is always ON coil
MCS I
FOR DO /Inesting FOR loop, the loop times is DO

7

LD> D1[D21] D2[D21] //if the current data is larger than the next, it will be ON

XCH D1[D21] D2[D21] /lexchange the two neighbouring data
LD SMO //MB000 is always ON cail

INC D21 /lincrease one for D21

MCR 1

NEXT /match the second FOR

MCR 1

NEXT /Imatch the first FOR

4-3-5 [FEND] and [END]

1)Summary
FEND means the main program ends, while END means program ends;

main program ends [FEND]

Execution - Suitable Models | XG1, XG2
condition
Hardware - Software -
requirement requirement
program ends [END]
Execution - Suitable Models | XG1, XG2
condition
Hardware - Software -
requirement requirement

2)Operands
Operands | Function Data Type
None - -

3)Suitable Soft Components

None

Description

Even though [FEND] instruction represents the end of the main program, the function is same
to END toprocess the output/input, monitor the refresh of the timer, return to program step0.

78

1100
FEND

—»3—I Main program | Main program |—?
|

| |
lw | Ix10 X11 w
[[
& ° P20 S cALL | P21 | S
IS =i
X - : x|
} Main program Main program |
|

| |
E— [—

{FEND =
P20 P21
Main program { Main program %

%I

END
END

If program the tag of CALL instruction behind FEND instruction, there must be SRET
instruction. If the interrupt pointer program behind FEND instruction, there must be IRET
instruction.

After executing CALL instruction and before executing SRET instruction, if execute FEND
instruction; or execute FEND instruction after executing FOR instruction and before
executing NEXT, an error will occur.

In the condition of using many FEND instructions, please make program or subprogram
between the last FEND instruction and END instruction.

79

4-4 Data compare function

Mnemonic | Function Chapter
LD= LD activates when (S1)= (S2) 4-4-1
LD> LD activates when (S1) > (S2) 4-4-1
LD< LD activates when (S1)<< (S2) 4-4-1
LD<> LD activates when (S1)# (S2) 4-4-1
LD<= LD activates when (S1)< (S2) 4-4-1
LD>= LD activates when (S1)> (S2) 4-4-1
AND= AND activates when (S1)= (S2) 4-4-2
AND> AND activates when (S1)> (S2) 4-4-2
AND << AND activates when (S1) < (S2) 4-4-2
AND<> | AND activates when (S1)# (S2) 4-4-2
AND<= AND activates when (S1)< (S2) 4-4-2
AND>= AND activates when (S1)> (S2) 4-4-2
OR= OR activates when (S1)= (S2) 4-4-3
OR> OR activates when (S1)> (S2) 4-4-3
OR< OR activates when (S1)<< (S2) 4-4-3
OR<> OR activates when (S1)# (S2) 4-4-3
OR< = OR activates when (S1)< (S2) 4-4-3
OR>= OR activates when (S1)> (S2) 4-4-3
4-4-1 LD Compare [LD]
1) Summary
LD is the point compare instruction connected with the generatrix.
LD Compare [LD]
16 bits As below 32 bits As below
Execution - Suitable Models | XG1, XG2
condition
Hardware - Software -
requirement requirement
2) Operands
Operands | Function Data Type
S1 Being compared number address 16/32bits, BIN
S2 Comparand address 16/32 bits, BIN

3) Suitable soft components

Operan Word soft elements Bit soft elements
ds System Consta | Module System
nt
DIF| T|C|D|D|D|D KH 1| Q| X|Y M|S|T|C| Dn
DID|D|X|Y|M]|S D| D m
S1 e o | 0o | 0| 0o | @ ° ° °
S2 o @ ° ° ° ° ° ° °

80

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M,HM,SM; Sincludes S HS; T
includes T,HT; C includes C, HC.

Description
16 bits instruction | 32 bits Activate Condition | Not Activate Condition
instruction

LD= DLD= (S1)=(S2) (SD#(S2)

LD> DLD> (S1)> (S2) (SH=(S2)

LD< DLD< (S1)< (S2) (S1H=>(S2)

LD<> DLD< > (S#(S2) (S1)= (S2)

LD<= DLD<= (SH=(82) (S1)> (S2)

LD>= DLD>= (S1)=(S2) (SH< (52

GO CD I
— Lb= | K10 | Co }H
~—| > | p2o | K30 H(L{ SET [vi |

% DLD> ‘K68899‘ €300 } M50

M4
—)

Note Items

® When the source data’s highest bit (16 bits: b15,32 bits: b31) is 1, the data is seemed to a
negative number.

® The comparison of 32 bits counter should use 32 bits instruction. If using16 bits instruction,
the program or operation will be error.

4-4-2 Serial Compare [AND]

1)Summary
AND: serial connection comparison instruction.

AND Compare [AND]

16 bits As Below 32 bits As Below
Execution Normally ON/OFF coil Suitable XG1, XG2
condition Models
Hardware - Software -
requirement requirement

2)Operands

81

Operands | Function Data Type
S1 Being compared number address 16/32bit, BIN
S2 Comparand address 16/32bit, BIN

3)Suitable soft components

Operan Word soft elements Bit soft elements
ds System Consta | Module System
nt
DIF|T|C|D|D| D|D KH I Q| X|Y M|S|T|C| Dn
DID|ID|X|Y|M|S D| D m
S1 e o | 0o | 0| 0o | @ o | o °
S2 o o | 0o | 0| 0o | @ o | o °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM

includes DM, DHM; DS includes DS, DHS. M includes M,HM,SM; Sincludes S;HS; T

includes T,HT; C includes C, HC.

Description

16 bits instruction | 32 bits Activate Condition Not Activate Condition
instruction
AND= DAND= (S1)= (S2) (SH#(S2)
AND> DAND > (S1)> (S2) (SH<(S2)
AND< DAND < (S1)< (S2) (S1)>(S2)
AND<> DAND <> (SDH#(S2) (S1)= (S2)
AND< = DAND< = (SH=(S2) (S1)> (S2)
AND> = DAND> = (S1)=>(S2) (S1)< (S2)
0 () (=)
- AND= | K100 | co
X1
] AND > ‘ K-30 \ DO }—{ SET \ Y1 \

JL{ DAND> | K68899 | D10 |—

M4
—

Note Items

When the source data’s highest bit (16 bits: b15,32 bits: b31) is 1, it is seemed to negative

number.

82

The comparison of 32 bits counter should use 32 bits instruction. If using16 bits instruction,
the program or operation will be error.

4-4-3 Parallel Compare [OR]

1)Summary

OR: parallel connection comparison instruction.

Parallel Compare [OR]

16 bits As below 32 bits As below
Execution - Suitable Models | XG1, XG2
condition
Hardware - Software -
requirement requirement

2) Operands
Operands | Function Data Type
S1 Being compared number address 16/32 hits,BIN
S2 Comparand address 16/32 bhits,BIN

3) Suitable soft components

Operan Word soft elements Bit soft elements
ds System Consta | Module System
nt
DIF|T|C|D|D| D|D KH I Q| X|Y M|S|T|C| Dn
DID|D|X|Y|M]|S D| D m
S1 o o | 0o | 0| 0| @ o | o °
S2 e o | 0o | 0| 0o | @ o | o °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M,HM,SM; Sincludes S HS; T
includes T,HT; C includes C, HC.

Description

16 bits instruction 32 bits instruction Activate Condition | Not Activate Condition
OR= DOR= (S1)= (S2) (SDH#(S2)

OR> DOR> (S1)> (S2) (SHZ(S2)

OR< DOR< (S1)< (S2) (S1)=(S2)

OR< > DOR< > (S1)#(S2) (S1)= (S2)

OR<= DOR< = (SDH=(S2) (S1)> (S2)

OR>= DOR> = (S1)= (S2) (S1)< (S2)

83

M50

% DOR> \ D10 ‘K68899}7

Note Items

® When the source data’s highest bit (16 bits: b15,32 bits: b31) is 1, it is seemed to negative
number.

® The comparison of 32 bits counter should use 32 bits instruction. If using16 bits instruction,
the program or operation will be error.

Example: forbid the outputs when it reaches the certain time. In the below program, when the
date is June 30™, 2015, all the outputs will be disabled. The password 1234 is stored in HDO
(HD1). When the password is correct, all the outputs are enabled.

%SM}O | RO DO |
D2 :§3o D1 je DO :r‘<15 HD(‘JDI;:L‘234 S{I\g3\4
1= =1 =1 D= (S)
Dl} :K}7 Dchs
D? }‘<16
=1
HDO K1234 SM34
D=| (R)
LD SMO /ISMO is always ON coil
TRD DO Ilread the RTC (real time clock) value and store in DO~D6
LD>= D2 K30 //RTC date >30
AND>= D1 K6 //IRTC month >6
AND>= DO K12 //IRTC year >15
LD>= D1 K7 /for RTC month > 7
AND>= DO K15 //RTC year > 12
ORB /lor
OR>= DO K16 //RTC year > 16
DAND<> HDO K1234 //and password #1234
SET SM34 //set ON M34, all the outputs are disabled
DLD= HDO K1234 //password=1234, correct password
RST SM34 /lreset SM34, all the outputs are enabled

84

4-5 Data Move Instructions

Mnemonic Function Chapter
CMP Data compare 4-5-1
ZCP Data zone compare 4-5-2
MOV Move 4-5-3
BMOV Data block move 4-5-4
PMOV Data block move (with faster speed) 4-5-5
FMOV Fill move 4-5-6
EMOV Float number move 4-5-7
FWRT FlashROM written 4-5-8
MSET Zone set 4-5-9
ZRST Zone reset 4-5-10
SWAP The high and low byte of the 4511
destinated devices are exchanged
XCH Exchange two data 4-5-12

4-5-1 Data Compare [CMP, DCMP, QCMP]

1) Summary
Compare the two data, output the result.

Data Compare [CMP,DCMP,QCMP]

16 bits CMP 32 bits DCMP

Execution Normally ON/OFF, Suitable Models | XG1, XG2

condition rising/falling edge

Hardware - Software -

requirement requirement

64 bits QCMP

Execution Normal ON/OFF/falling or | Suitable Models | XG2

condition rising pulse edge

Hardware Version V3.7.1 or later Software Version V3.7.4a or

requirement requirement later

2) Operands

Operands | Function Data Type

S1 Specify the data (to be compared) or soft 16/32/64 bits,BIN
component’s address code

S Specify the comparand’s value or soft 16/32/64 bits,BIN
component’s address code

D Specify the compare result’s address code bit

3) Suitable soft component

Operands Word soft elements Bit soft elements
System Constant | Module System
DIF| T|C|D|D| D|D KH 1| Q| X|Y|M|S|T|C| Dn
DI DID| X|Y|M]|S D| D m
S1 oo 0o | 0o | o | o o | o °
S2 oo 0o | o | o | o o | o °

85

LD [|

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M,HM,SM; Sincludes S HS; T
includes T,HT; C includes C, HC.

Description
" G GO @
- oMP ‘ D10 ‘ D20 ‘ MO ‘
MO
— D10 > D20 ON
M1
— D10 = D20 ON
M2 !
— D10 < D20 ON

T

Even X0=OFF to stop CMP instruction,
MO0~M2 will keep the original status

® Comparedata (S13 and (s-), show the result in three soft components starting from
+1, (D-)+2: the three soft components will show the compare result.
® Note:The addresses of operands in QCMP instructions must be even.

4-5-2 Data zone compare [ZCP, DZCP]

1) Summary

Compare the current data with the data in the zone, output the result.

Data Zone compare [ZCP, DZCP]

16 bits ZCP 32 bits DZCP
Execution Normally ON/OFF, Suitable Models | XG1, XG2
condition rising/falling edge
Hardware - Software -
reguirement requirement
2) Operands
Operands | Function Data Type
S1 The low limit of zone 16/32 bits, BIN
S2 The high limit of zone 16/32 bits, BIN
S The current data address 16/32 bits, BIN
D The compare result bit
3) Suitable soft components
Operands Word soft elements Bit soft elements
System Consta | Module System
nt
DF| T|C|D|D|D|D|] KH |[I]Q|X|Y M|S|T|C| Dn
DI D|D|X|Y|M|S D| D m
S1 o o | o | 0| 0 | @ o | o °

86

S2 o 0o | 0o 0| 0| 0| @ |0 o

S o 0o 0o | 0| 0 | @ o | o °

D

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M,HM,SM; Sincludes S HS; T

includes T,HT; C includes C, HC.

Description
&
X Zcp D20 D30 DO MO
MO
——— D20 |>[DO | MO ON
M1
—4+—— D20 |<[DO |<[D30 | M1ON
M2
— [DO |>[D30 | M2ON

Even X0=0OFF stop ZCP instruction, MO~M2

will keep the original status

® Compare(S -with (S1)and(S2) , output the three results starting from

() , 1,+2:storethethree results.

4-5-3 MOV [MOV, DMOV, QMOV]

1) Summary

Move the specified data to the other soft components
MOV [MOV,DMOV,QMOV]
16 bits MOV 32 hits DMOV
Execution Normally ON/OFF, Suitable Models | XG1, XG2
condition rising/falling edge
Hardware - Software -
requirement requirement
64 bits QMOV
Execution Normal ON/OFF/falling or | Suitable Models | XG2
condition rising pulse edge
Hardware Version VV3.7.1 or later Software Version
requirement requirement \/3.7.4a or later

87

2) Operands

Operands | Function Data Type

S Specify the source data or register’s address 16 bits/32 bits/64 bits, BIN
code

D Specify the target soft component’s address 16 bits/32 bits/64 bits, BIN
code

3) Suitable soft component

Operan Word soft elements Bit soft elements
ds System Consta | Module System
nt
DIF|T|C|D|D|D|D| KH 1 Q| X|Y|M|S|T|C| Dn
DID|ID|X|Y|M|S D| D m
S e/l o | o | 0| 0| o o | o ' °
D ° o | o ° o | o °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M,HM,SM; Sincludes S HS; T
includes T,HT; C includes C, HC.

Description

< Move 16 bits data >

. s
P ~—— Mmov | Kkio | D10 |
® Move the source data to the target

® When XO is off, the data will not change
® Move K10to D10

< Move 32 bits data >
Please use DMOV when the value is32 bits, such as MUL instruction, high speed counter...

DMOV \ DO \ D10 \
% DMOV \ HSCO \ D20 \

(D1, D0) — (D11, D10)
(the current value of HSC0)—(D21, D20)

< Move 64 bits data >
Please use QMOV when the value is64 bits, such as DMUL instruction

HXL{ QMOV‘ DO \ D10 \

(D3,D2,D1,D0)—(D13,D12,D11,D10)

88

<read the counter or timer current value>

PL{ MOV \ T0 \ D20

(The current value of T0)—(D20)

The same as counter

<indirect set the timer value>

%2
—H—| MOV K10 Do |
0

_h|d|—| TME T20 D20 KI0D |

(K10) (D20)

D20=K10

Note: the address of the operand in the QMOV instruction must be an even number.

4-5-4 Data block Move [BMOV]

1) Summary

Move the data block to other soft component

Data block move [BMOV]

16 bits BMOV 32 bits -
Execution Normally ON/OFF caoil, Suitable Models | XG1, XG2
condition rising/falling edge
Hardware - Software -
requirement requirement

2) Operands
Operands | Function Data Type
S Specify the source data block or soft component | 16 bits, BIN; bit

address code

D Specify the target soft components address code | 16 bits, BIN; bit
n Specify the move data’s number 16 bits, BIN;

3) Suitable soft components

Operan Word soft elements Bit soft elements
ds System Consta | Module System
nt
DIF| T|C|D|D|D|D KH I Q[X|Y|M|S|T|C| Dn
DID| D|X|Y|M|S D| D m
S e/ o | 0o | 0o | @ | o o | o oo e
D ° ° ° ° ° ° o o | o
n [J [] [] [] [] []

89

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M,HM,SM; S includes S;HS; T
includes T,HT; C includes C, HC.

Description

Move the source data block to the target data block. The data quantity is n.

<word move>
. = :
H% BMOV \ D5 \ D10 \ K3 \

D5 — D10
D6 — DIl n=3
D7 — DI2
<bit move>
. © :
—H—{ BMOV \ Y5 \ Y10 \ K3 \

Y5 e — Y10
Y6 —— Y11 n=3
Y7 ™ Y12

As shown in the figure below, when the transmission number range overlaps, in order to
prevent the transmission source data from being overwritten without transmission, according
to the method of number overlap, this instruction will be carried out in the order of (1) ~ (3).

HXH BMOV‘ D10 \ D9 \ K3 \
X2
- BMOV ‘ D10 ‘ D11 ‘ K3 ‘
D10 D oo
D11 @ _ " b
®
D12 — DIl
D10 ® _[pu
)
D11 — DI2
)
D12 — DI3

90

4-5-5 Data block Move [PMOV]

1)Summary
Move the specified data block to the other soft components
Data block mov[PMOV]
16 bits PMOV 32 bits -
Execution Normally ON/OFF caoil, Suitable XG1, XG2
condition rising/falling edge Models
Hardware - Software -
requirement requirement
2) Operands
Operands | Function Data Type
S Specify the source data block or soft component | 16 bits, BIN; bit
address
D Specify the target soft components address 16 bits, BIN; bit
n Specify the data quantity 16 bits, BIN;

3) Suitable soft components

Operan Word soft elements Bit soft elements
ds System Consta | Module System
nt
DIF| T|C|D|D|D|D| KH |I1|Q|X|Y M|S T|C| Dn
D/ DID|IX|Y|M|S D| D m
S °
D °
n [] [] [[o [] o

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M,HM,SM; Sincludes S;HS; T
includes T,HT; C includes C, HC.

Description

Move the source data block to target data block, the data quantity is n

Gy (o

n

HX(H PMOV‘ D5 \ Dlo‘ K3 \

D5 -— D10
D6 -— D11
D7 -— D12

n=3

The function of PMOV and BMOV is mostly the same, but the PMOV execution speed is

faster.

PMOV finish in one scan cycle, when executing PMQOV, close all the interruptions.
Mistake may happen if the source address and target address are overlapped.

91

4-5-6 Fill Move [FMOV, DFMOV]

1) Summary
Move the specified data to the other soft components

Fill Move [FMOV, DFMOV]

16 bits FMOV 32 bits DFMOV
Execution Normally ON/OFF, Suitable XG1, XG2
condition rising/falling edge Models

Hardware - Software -
requirement requirement

2) Operands

Operands | Function Data Type

S Specify the source data or soft component 16/32 bits, BIN;
address

D Specify the target soft components address 16/32 hits, BIN;

n Specify the move data’s number 16/32 bits, BIN;

3) Suitable soft component

Operan Word soft elements Bit soft elements
ds System Consta | Module System
nt
DIF|T|C|D|D|D|D KH 1| Q[X|Y|M|S|T|C| Dn
DID|D|X|Y|M]|S D| D m
S o o ° ° ° ° ° ° °
D ° o | o ° o | o
n ° e | o ° o | o °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M,HM,SM; Sincludes SHS; T
includes T,HT; C includes C, HC.

Description

<16 bits instruction>
) n
X0
P% FMOV | KO | DO | Ki0 |
® Move KO to D0~D?9, copy asingle data device to a range of destination device

® Move the source data to target data, the target data quantity is n
® [f the set range exceeds the target range, move to the possible range

<32 bits instruction >

H () (o) n

(})—{DFMOV‘ DO | DI | K3 |

92

® Move D0.D1to D10.D11:D12.D13:D14.D15.

<16 bits data transfer >

o]

DO. D1

KO E ~
«

s

%

% L
=

KO

«

Ko

o -

<32 bits data transfer >

Do b0 | —
D1 D11

s
s
D1 pis |

4-5-7 Floating move [EMOV, EDMOV]

1)Summary

Move the float number to target address

Floating move [EMOV, EDMOV]

16 bits - 32 bits EMOV
Execution Normally ON/OFF, Suitable Models | XG1, XG2
condition rising/falling edge

Hardware - Software -
requirement requirement

64 bits EDMOV

93

Execution Normal ON/OFF/falling or | Suitable Models | XG2
condition rising pulse edge
Hardware Version V3.7.1 or later Software Version VV3.7.4a or
requirement requirement later
2)Operands
Operand | Function Type
S Source soft element address 32 /64bits, BIN
D Destination soft element address 32 /64bits, BIN

3)Suitable soft element

Operan Word soft elements Bit soft elements
ds System Consta | Module System
nt
DIF| T|C|D|D|D|D KH I Q| X|Y M|S|T|C| Dn
DID|ID|X|Y|M|S D| D m
S o o o | o o | o °
D ° ° o | o

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M,HM,SM; Sincludes S HS; T
includes T,HT; C includes C, HC.

Description

<32 bits instruction>
Binary floating — binary floating

O D

X0
}H% EMOV | DO | D10 | (D1,D0) — (D11,D10)

® X0 is ON, send the floating number from (D1, D0) to (D11, D10).
® X0 is OFF, the instruction doesn’t work.

’ o
FH EMOV | K500 | D10 |

(K500) — (D11,D10)
® [f constant value K, H is source soft element, they will be converted to floating number.
® K500 will be converted to floating value.

<64 bits instruction>

X0
—=*—{EoMOV | D0 | D0 | (D3.D2.D1D0)-(D13.012011.D10)

® X0 is ON, send the floating number from (D3,D2,D1,D0)to(D13,D12,D11,D10).
® XO0 is OFF, the instruction doesn’t work.

94

ONCD,

EDMOV‘ K500 \ D10 \

E

(K500)—(D13,D12,D11,D10)

® |[f constant value K, H is source soft element, they will be converted to floating number.
® K500 will be converted to floating value.

® The addresses of operands in EDMOV instructions must be even.

4-5-8 FlashROM Write [FWRT, DFWRT, QFWRT]

1) Summary

Write the specified data to FlashROM register.

FlashROM Write [FWRT DFWRT,QFWRT

reguirement

reguirement

16 bits FWRT 32 bits DFWRT
Execution Normally ON/OFF, Suitable Models | XG1, XG2
condition rising/falling edge

Hardware - Software -

requirement requirement

64 bits QFWRT

Execution Normal ON/OFF/falling or | Suitable Models | XG2

condition rising pulse edge

Hardware Version V3.7.1 or later Software Version V3.7.4a or

later

2) Operands
Operands | Function Data Type
S The data write in the source or save in the soft 16 /32/64 bits, BIN
element
D target soft element 16 /32/64 bits
D1 target soft element start address 16 /32/64 bits
D2 Write in data quantity 16 /32/64 bits, BIN

3) Suitable soft components

Operan Word soft elements Bit soft elements
ds System Consta | Module System
nt
DIF| T|C|D|D|D|D KMH 1| Q Y M|S|T|C| Dn
DID|D|X|Y|M]|S D| D m
S1 e/l o | o | 0| 0 | o o | o °
S2 °
S °
D ° o | o ° ° ° ° °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M,HM,SM; Sincludes S HS; T
includes T,HT; C includes C, HC.

Description

95

< Written of single word >

HO &

H—{ FWRT \ DO \ FDO \ Write value from DO to FDO

<Wsritten of double words>

CONNCD

HL{ DFWRT | Do | FDo | Write value from DO,D1 to FDO,FD1

<Wsritten of four words>

. ©
Pr% QFWRT‘ DO \ FDO \

Write value from D0,D1,D2,D3to FDO,FD1,FD2,FD3.

<Written of multi-word>

Hz ORONC

i FWRT\ DO \ FDO‘ K3 \

Write value from DO, D1, D2 to FDO, FD1,FD2

NOTE:

> 1: FWRT instruction only can write data into FlashROM register. FlashROM can keep the
data even the power supply is off. It can store the important technical parameters.

2 2: Written of FWRT needs a long time, about 500ms, so frequently write-in is not
recommended

»3: The written time of FlashROM is about 1,000,000 times. So we suggest using edge
signal (LDP, LDF etc.) to activate the instruction.

»¢4: Frequently write-in will damage the FlashROM.

4-5-9 Zone set [MSET]

1)Summary
Set the soft element in certain range

Multi-set [MSET]

16 bits MSET 32 bits -
Execution Normally ON/OFF; falling or Suitable XG1, XG2
condition rising pulse edge signal Models

Hardware - Software -
requirement requirement

96

2)Operands

Operands | Function Data Type
D1 Start soft element address bit
D2 End soft element address bit

3) Suitable soft components

Operan Word soft elements Bit soft elements
ds System Consta | Module System
nt
DIF| T|C|D|D|D|D KMH 1| Q| X|Y|M|S|T|C| Dn
DI D|ID|X|Y|M]|S D| D m
D1 oo |0 0|00
D2 e o0 |0|0|e

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M,HM,SM; Sincludes S;HS; T
includes T,HT; C includes C, HC.

Description

M10 \ M120 \

Set ON M10~M120

P«H MSET \

® Set the coil from M10 to M120.

e (D1}, are specified as the same type of soft component, and <

® When (D1}>,(D2will not run Zone set, but set SM409 SD409 = 2

4-5-10 Zone reset [ZRST]

1)Summary
Reset the soft element in the certain range

Multi-reset [ZRST]

16 bits ZRST 32 bits -
Execution Normally ON/OFF, falling | Suitable XG1, XG2
condition or rising pulse edge Models
Hardware - Software -
requirement requirement

2) Operands
Operands | Function Data Type
D1 Start address of soft element Bit,16 bits,BIN
D2 End address of soft element Bit,16 bits,BIN

3) Suitable soft components

Operan Word soft elements Bit soft elements
ds System Consta | Module System
nt
DIF| T|C|D|D| D|D KH 1| Q[X|Y|M|S|T|C| Dn
DI D|D|X|Y|M|S D| D m
D1 ° e | o ° e/ o 0o |0 0|0
D2 ° o | o | @ ° oo 0o |0 0|0

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS. M includes M,HM,SM:S includes S,HS; T
includes T,HT;C includes C, HC.

Description
y
— ZRST \ M500 \ M559 \ Reset M500~M559
ZRST | DO | D100 | Reset DO~D100

® (D1}, are specified as the same type of soft units, and <
® When(p1y > , only reset the specified soft unit, and set SM409, SD409 = 2.

Other Reset Instruction

RST can reset one soft component. The operand can be Y, M, HM, S, HS, T, HT, C, HC, TD,
HTD, CD, HCD, D, HD

FMOV can move 0 to these soft components: DX, DY, DM, DS, T(TD), HT(HTD), C(CD),
HC(HCD), D, HD.

4-5-11 Swap the high and low byte [SWAP]

1) Summary
Swap the high and low byte of specified register

High and low byte swap [SWAP]

16 bits SWAP 32 bits -
Execution Falling or rising pulse edge | Suitable XG1, XG2
condition Models

Hardware - Software -
reguirement reguirement

2) Operands

Operands | Function Data Type

S The address of the soft element 16 bits; BIN

98

3) Suitable soft components

Operan Word soft elements Bit soft elements
ds System Consta | Module System
nt
DIF| T|C|D|D|D|D| KH |I1|Q|X|Y M|S T|C| Dn
DIDID|X|Y|M|S D| D m
S ° o | o

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS. M includes M,HM,SM:S includes S,HS;T
includes T,HT;C includes C, HC.

Description
o D
SWAP D10
D10
High 8-bit | Low 8-bit
V_/V

® Exchange the high 8-bit and low 8-bit of 16-bit register.

® |f this instruction is activated by normal ON/OFF coil, the instruction will be executed in
every scanning period when X0 is ON. Falling or rising pulse is recommended to activate the
instruction.

4-5-12 Exchange [XCH, DXCH]

1) Summary
Exchange the data in two soft element

Exchange [XCH, DXCH]

16 bits XCH 32 bits DXCH
Execution Rising or falling pulse Suitable XG1, XG2
condition edge Models

Hardware - Software -
requirement requirement

2) Operands

Operands | Function Data Type
D1 The soft element address 16 bits/32 bits, BIN
D2 The soft element address 16 bits/32 bits, BIN

99

3) Suitable soft component

Operands Word soft elements Bit soft elements
System Consta | Module System
nt
DIF| T|C | D|D|D]|D KH 1| Q[X|Y|M|S|T|C| Dn
DID|ID|X|Y|M]|S D| D m
D1 ° o | o ° o | o
D2 ° e | o ° o | o

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS. M includes M,HM,SM:S includes S,HS; T
includes T,HT;C includes C, HC.

Description

<16 bits instruction>

F@H

XCH \ D10 \ D11

Before (D10) =100 —After (D10) =101
(D11) =101 (D11) =100

® The contents of the two destination devices D1 and D2 are swapped,
® When X0 is ON, the instruction will be executed in every scanning period. Falling or rising
pulse is recommended to activate the instruction.

<32 bits instruction >

X0
P% DXCH \ D10 \ D20 \

32 bits instruction [DXCH] swaps the dword value D10,D11 and D20, D21.

Before (D10) =100 — after (D10) =200
(D11) =1 (D11D10) =65636 (D11) =10 (D11D10) =655460
(D20) =200 (D20) =100
(D21) =10 (D21D20) =655460 (D21) =1 (D21D20) =65636

100

4-6 Data Operation Instructions

Mnemonic Function Chapter
ADD Addition 4-6-1
SUB Subtraction 4-6-2
MUL Multiplication 4-6-3
DIV Division 4-6-4
INC Increment 4-6-5
DEC Decrement 4-6-5
MEAN Mean 4-6-6
WAND Logic Word And 4-6-7
WOR Logic Word Or 4-6-7
WXOR Logic Exclusive Or 4-6-7
CML Compliment 4-6-8
NEG Negation 4-6-9
4-6-1 Addition [ADD, DADD, QADD]
1) Summary
Add two numbers and store the result
Add [ADD,DADD, QADD]
16 bits ADD 32 bits DADD
Execution Normal ON/OFF/falling or | Suitable Models | XG1, XG2
condition rising pulse edge
Hardware - Software -
requirement reguirement
64 bits QADD
Execution Normal ON/OFF/falling or | Suitable Models | XG2
condition rising pulse edge
Hardware Version V3.7.1 or later Software Version V3.7.4a or
requirement requirement later
2) Operands
Operands | Function | Data Type

Three operands

Sl

The add operation data address

16 bits/32 bits/64 bits, BIN

S2

The add operation data address

16 bits/32bit/64 bits, BIN

D

The result address

16 bits/32bit/64 bits, BIN

Two operands

D

Be Added data and result data address

16 bits/32 bits/64 bits, BIN

Sl

Add data address

16 bits/32 bits/64 bits, BIN

101

3) Suitable soft components

Operan Word soft elements Bit soft elements
ds System Consta | Module System
nt
DIF|T|C|D|D| D|D KH I Q| X|Y M|S|T|C| Dn
DID|ID|X|Y|M|S D| D m
Three operands
S1 o | o | o | 0| o | @ o | o '
S2 o | o | o | 0| o | @ o | o '
D ° o | o ° o | o
Two operands
D °
Sl o | o °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M,HM,SM; S includes S;HS; T
includes T,HT; C includes C, HC.

Description

<Three operands>

. & (@
P% ADD \ D10 \ D12 \ D14 (D10) + (DI2) — (D14)

e Two source data do binary addition and send the result to target address. Each data’s highest
bit is the sign bit, 0 stands for positive, 1 stands for negative. All calculations are algebraic
processed. (5+ (-8) =-3)

e If the result of a calculation is “0”, the “0” flag acts. If the result exceeds 323767 (16 bits
operation) or 2147483647 (32 bits operation) or 9223372036854775807(64 bits operation),
the carry flag acts (refer to the Related flag). If the result exceeds —323768(16 bits
operation)or —2147483648 (32 bits operation) or -9223372036854775808(64 bits operation),
the borrow flag acts (refer to the Related flag).

e When doing 32/64 bits operation, the lower 16-bit side of the word soft component is
specified, and the next numbered soft component will be used as the high position. To avoid
ID repetition, it is recommended that the soft component be specified with an even number.

For example, the 32-bit notation of the preceding example is shown in the following figure.
In 32-bit operation, the address of the second addend must start from D12 because the first
addend occupies registers D10 and D11. To avoid registers being occupied repeatedly, it is
recommended that the soft components be numbered as even numbers.

y G @
P% DADD \ D10 \ D12 \ D14 \

(D11, D10)-+(D13, D12)—(D15, D14)

102

e The source and target address can be the same. In the above example, when X0 is ON, the
instruction will be executed in every scanning period.

<Two operands>
%0 (s19)
Hﬁ% ADD | D10 | DI2 | (D10)+ (D12) — (D10)

e Two source data do binary addition and send the result to addend data address. Each data’s
highest bit is the sign bit, O stands for positive, 1 stands for negative. All calculations are
algebraic processed. (5+ (-8) =-3)

e If the result of a calculation is “0”, the “0” flag acts. If the result exceeds 323767 (16 bits
operation) or 2147483647 (32 bits operation) or 9223372036854775807(64 bits operation),
the carry flag acts (refer to the Related flag). If the result exceeds —323768(16 bits
operation)or -2147483648 (32 bits operation) or -9223372036854775808(64 bits
operation),the borrow flag acts (refer to the Related flag).

e When doing 32/64 bits operation, the lower 16-bit side of the word soft component is
specified, and the next numbered soft component will be used as the high position. To avoid
ID repetition, we recommend you assign device’s ID to be even number.

e Note:The addresses of operands in QADD instructions must be even.

e In the above example, when X0 is ON, the instruction will be executed in every scanning
period. The rising or falling pulse edge is recommended to activate the instruction.

y GO G
w—{ ADD \ D10 \ D12 \ D10 \
X0

CORNCD

ADD \ D10 \ D12 \

The two instructions are the same.

Related flag

Flag meaning

Flag Name Function

ON: the calculate result is zero
SM020 Zero OFF: the calculate result is not zero

ON: the calculate result is over -32768(16 bits) or -2147483648(32
bits) or -9,223,372,036,854,775,808(64 bits), borrowing flag bit
SM021 Borrow | action.

OFF: the calculate result is less than -32768(16 bits) or -
2147483648(32 bits) or -9,223,372,036,854,775,808 (64 bits)

ON: the calculate result is over 32768(16 bits) or 2147483648(32
bits) or 9,223,372,036,854,775,807(64 bits), carrying flag bit action.
OFF: the calculate result is less than 32768(16 bits) or
2147483648(32 bits) or 9,223,372,036,854,775,807(64 bits)

SM022 Carry

103

4-6-2 Subtraction [SUB]

1) Summary
Two numbers do subtraction, store the result

Subtraction [SUB, DSUB, QSUB]

16 bits SUB 32 bits DSUB
Execution Normally ON/OFF/rising or | Suitable XG1, XG2
condition falling pulse edge Models
Hardware - Software -
requirement requirement
64 bits QSUB
Execution Normal ON/OFF/falling or Suitable Models | XG2
condition rising pulse edge
Hardware Version V3.7.1 or later Software Version VV3.7.4a or
requirement requirement later
2)Operands
Operands | Function | Data Type
Three operands
Sl The sub operation data address 16 bits /32 bits/64 bits, BIN
S2 The sub operation data address 16 bits /32 hits/64 bits, BIN
D The result address 16 bits /32 hits/64 bits, BIN
Two operands
D Be subtracted data and result address 16 bits /32 bits/64 bits,BIN
S1 Subtract data address 16 bits /32 bits/64 bits,BIN

3)Suitable soft component

Operan Word soft elements Bit soft elements
ds System Consta | Modul System
nt e
DIF| T|C|D/ D|D|D| KH I Q| X|Y|M|S|T|C| Dn
DIDID|IX|Y| M|S D| D m

Three operands
S1 e/ o | o | o | 0| 0| o |0 °
S2 e/ o | o | o | 0| 0| o |0 °
D ° o | o o | o | o
Two operands
D °
S1 o| o °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M,HM,SM; Sincludes S HS; T
includes T,HT; C includes C, HC.

Description

<Three operands>

104

M sus | D0 | D12 | DM | (D10)—(D12)— (DI4)

H CONECORNCD

S1 appoint the soft unit’s content, subtract the soft unit’s content appointed by S2
algebraically. The result will be stored in the soft unit appointed by D.

e The action of each flag, the setting method of 32/64 bits operation’s soft units are both the
same with the preceding ADD instruction.

e The importance is: in the preceding program, if X0 is ON, SUB operation will be executed
every scan cycle.

e Refer to chapter 4-6-1 for flag action and functions.

<Two operands>

. &
P% sus | D10 | D12 | (D10) — (D12) — (D10)

e D appoint the soft unit’s content, subtract the soft unit’s content appointed by Sl
algebraically. The result will be stored in the soft unit appointed by D.

e The action of each flag, the setting method of 32/64 bits operation’s soft units are both the
same with the preceding ADD instruction.

e The importance is: in the preceding program, if X0 is ON, SUB operation will be executed
every scan cycle. Rising or falling pulse edge is recommended to activate the instruction.

e Refer to chapter 4-6-1 for flag action and functions.The relationship of the flag’s action and
vale’s positive/negative is shown below:

Zero flag Tere flag Zero flag
S2, -1, 0. &2, TaR -FI:'I’:- -‘1 3, 787 0410 2
'_hl.__ﬂ.fk_;#,ﬁ—:r :
Borrow flag Dats’ = / \ Data' s Carry flag
hi ghest hi ghest
Zere flag bit i= 1\ l,//’1:|1t iz 0 Zero flas

s
2. -l Q 147, 43, 64 ,;_fffr_\nﬁL 2, 147, 43, 64, 0. 1. 2
A S _L

Borrow flag Carry flag

Note: The addresses of the operands in the QSUB instruction must be even.

105

4-6-3 Multiplication [MUL, DMUL, QMUL]

1)Summary
Multiply two numbers, store the result
Multiplication [MUL, DMUL, QMUL]
16 bits MUL 32 bits DMUL
Execution Normally ON/OFF / pulse Suitable XG1, XG2
condition edge Models
Hardware - Software -
requirement requirement
64 bits QMUL
Execution Normal ON/OFF/falling or Suitable Models | XG2
condition rising pulse edge
Hardware Version V3.7.1 or later Software Version V3.7.4a or
requirement requirement later
2) Operands
Operands | Function Data Type
S1 The multiplication operation data address 16 bits /32 bits/64 bits,BIN
S2 The multiplication operation data address 16 bits /32 bits/64 bits,BIN
D The result address 16 bits /32 hits/64 bits,BIN

3) Suitable soft component

Operan Word soft elements Bit soft elements
ds System Consta | Modul System
nt e
DIF|T|C|D|D|D|D| KH I | Q| X|Y|M|S|T|C| Dn
DIDID|X|]Y|M]|S D| D m
S1 e/ o | o | o | 0| 0| o |0 °
S2 e/ o | o | o | 0| 0| o |0 °
D ° o | o o | o | o

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M,HM,SM; Sincludes S;HS; T
includes T,HT; C includes C, HC.

Description

<16 bits Operation>

HMMUL@@

BIN BIN BIN
DO \ D2 \ D4 \

(D0) x (D2) — (D5, D4)
16 bits 16 bits — 32 bits

e The contents of the two source devices are multiplied together and the result is stored at the
destination device in the format 0f32 bits. As the above chart: when (D0)=8, (D2)=9, (D5, D4)
=72.

106

e The result’s highest bit is the symbol bit: positive (0), negative (1).
e In the above example, when X0 is ON, the instruction will be executed in every scanning
period.

<32 bits Operation >

H G)

1
% DMUL \ DO \ D2 \ D4 \ (D1, D0) x (D3,D2) — (D7, D6, D5, D4)
32 bits 32 bits — 64 bits

When use32 bits operation, the result is stored at
bits.

e Even use word device,64 bits results can’t be monitored. Please change to floating value
operation for this case.

<64 bits Operation >

P(l% QuuL | po | b4 | D8 |

BIN BIN BIN
(D3,D2,D1, D0) x (D7, D6,D5,D4) — (D11, D10, D9, D8)
64 bits 64 bits — 64 bits

e In 64-bit operation, a target address uses a bit soft element to get 64-bit results (occupying
four consecutive registers, so don't reuse them). When using the word element, the result of
64-bit data operation cannot be directly monitored. Floating point arithmetic is recommended
in this case.

e Note: The addresses of the operands in the QMUL instruction must be even.

4-6-4 Division [DIV, DDIV, QDI1V]

1)Summary
Divide two numbers and store the result

Division [DIV, DDIV, QDIV]

16 bits DIV 32 bits DDIV
Execution Normally ON/OFF, Suitable XG1, XG2
condition rising/falling edge Models

Hardware - Software -
requirement requirement

64 bits QDIV

Execution Normal ON/OFF/falling or Suitable Models | XG2
condition rising pulse edge

Hardware Version VV3.7.1 or later Software Version V3.7.4a or
requirement requirement later

2) Operands

107

Operands

Function

Data Type

S1

The divide operation data address

16 bits /32 bits/64 bits, BIN

S2

The divide operation data address

16 bits /32 bits/64 bits, BIN

D

The result address

16 bits /32 bits/64 bits, BIN

3)Suitable soft components

Operan Word soft elements Bit soft elements
ds System Consta | Modul System
nt e
DIF| T|C|D/ D|D|D| KH Il Q| X|Y|M|S|T|C| Dn
D/ DID|X|Y|M]|S D| D m

S1 e/ o | o | o | 0| 0| o |0 °
S2 e/ o | o | o | 0| 0| o |0 °
D ° o | o o | o | o

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M,HM,SM; Sincludes SHS; T
includes T,HT; C includes C, HC.

Description

<16 bits operation>

F{(O oIV ‘ Do ‘ D2 4 ‘ Dividend Divisor ~ Result Remainder
BIN BIN BIN BIN
(D) + (D2) —» (D4)--- (D5)
16 bits 16 bits 16 bits 16 bits

e Sl appoints the dividend soft component, S2 appoints the divisor soft component, and D
specifies the software component and the next number of the software component to be
deposited and the remainder.

e Inthe above example, if input X0 is ON, devision operation is executed every scan cycle.

<32 bits operation>

@ @ e Dividend Divisor Result Remainder
X1
% DDIV ‘ DO ‘ D2 ‘ D4 ‘ BIN BIN BIN BIN
(D1,D0) =+ (D3,D2) — (D5,D4)--- (D7,D6)
32 bits 32 bits 32 bits 32 bits

108

e The dividend is composed by the device appointed by S1 and the next one. The divisor is
composed by the device appointed by S2 and the next one. The result and the remainder are
stored in the four sequential devices, the first one is appointed by D.

e Ifthe value of the divisor is 0, the instruction will be error.

e The highest bit of the result and remainder is the symbol bit (positive:0, negative: 1). When
any of the dividend or the divisor is negative, then the result will be negative. When the
dividend is negative, then the remainder will be negative.

<64 bits operation>

B & @ @
F}—{QDIVDOD4D8

Dividend Divisor Result Remainder

BIN BIN BIN BIN
(D3,D2,D1,D0) + (D7,D6,D5,D4) — (D11,D10,D9,D8)--- (D15,D14,D13,D12)

64 bit 64 bits 64 bits 64 bits

e The dividend is composed by the device appointed by S1 and the next one. The divisor is
composed by the device appointed by S2 and the next one. The result and the remainder are
stored in the four sequential devices, the first one is appointed by D.

o [fthe value of the divisor is 0, the instruction will be error.

e The highest bit of the result and remainder is the symbol bit (positive:0, negative: 1). When
any of the dividend or the divisor is negative, then the result will be negative. When the
dividend is negative, then the remainder will be negative.

e Note: The addresses of the operands in the QDIV instruction must be even.

4-6-5 Increment [INC, DINC, QINC] & Decrement [DEC, DDEC, QDEC]

1) Summary
Increase or decrease the number

Increase one [INC,DINC,QINC]

16 bits INC 32 bits DINC
Execution Normally ON/OFF, Suitable XG1, XG2
condition rising/falling edge Models

Hardware - Software -
requirement requirement

64 bits QINC

Execution Normal ON/OFF/falling or | Suitable XG2
condition rising pulse edge Models

Hardware Version VV3.7.1 or later Software Version V3.7.4a or later
requirement requirement

Decrease one [DEC,DDEC,QDEC]

16 bits | DEC | 32 bits | DDEC

109

Execution Normally ON/OFF, Suitable XG1, XG2
condition rising/falling edge Models
Hardware - Software -
requirement requirement
64 bits QDEC
Execution Normal ON/OFF/falling or | Suitable XG2
condition rising pulse edge Models
Hardware Version VV3.7.1 or later Software Version V3.7.4a or later
requirement requirement
2) Operands
Operands | Function Data Type
D The increase or decrease data address 16 bits / 32 bits/64 bits,BIN

3) Suitable soft components

Operan Word soft elements Bit soft elements
ds System Consta | Modul System
nt e
DIF| T|C|D/ D|D|D| KH I Q| X|Y|M|S|T|C| Dn
DIDID|X|Y|M]|S D| D m
D ° o | o o | o | o

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M,HM,SM; Sincludes S;HS; T
includes T,HT; C includes C, HC.

Description

< Increment [INC]>

X0
- INC \ DO \ (D0) +1—(DO)

o D will increase one when X0 is ON.

e For 16 bits operation, when +32767 increase one, it will become -32768; The flag bit will act.
for 32 bits operation, +2147483647 increases one is -2147483647. The flag bit will act.
for 64 bits operation, +9223372036854775807 increases one is -9223372036854775808. The
flag bit will act.

<Decrement [DEC]>
1
PH—{ DEC | D0 | (DO) —1 — (DO)

e D will decrease one when X1 is ON.
e -32767 or -2147483647 decrease one, the result will be +32767 or +2147483647. The flag bit
will act. For 64 bits operation, -9223372036854775808 decrease one is
110

+9223372036854775807. The flag bit will act.
e The addresses of operands in QINC and QDEC instruction must be even.

Note: When the edge instruction is triggered, the automatic addition and subtraction operation
is performed for each trigger. If it is triggered by normally open/normally closed, the
operation of auto-addition and auto-subtraction will be performed in each scanning period
after the conduction.

4-6-6 Mean [MEAN, DMEAN]

1)Summary
Get the mean value of data

Mean [MEAN,DMEAN]

16 bits MEAN 32 bits DMEAN
Execution Normally ON/OFF, Suitable XG1, XG2
condition rising/falling edge Models
Hardware - Software -
requirement requirement

2)Operands
Operands | Function Data Type
S The source datastart address 16 bits/32 bits, BIN
D The mean result address 16 bits/32 bits, BIN
n The data guantity 16 bits/32 bits, BIN

3)Suitable soft components

Operan Word soft elements Bit soft elements
ds System Consta | Modul System
nt e
DIF| T|C|D|D|D|D| KH I | Q[X|Y|M|S|T|C| Dn
DIDID|IX|Y| M|S D| D m

S o o o | @ ° o | o
D o o o | o o | o | o
n °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS. M includes M,HM,SM; S includes S,HS;
T includes T,HT; C includes C, HC.

Description
X0 () n (D0) + (D1) + (D2)
—H—{ MEAN \ DO \ D10 \ K3 \ 3 —» (D10)

111

e Store the mean value of source data (source sum divide by source quantity n). give the

remainder .

e The n cannot larger than soft component quantity, otherwise there will be error.

4-6-7 Logic AND [WAND, DWAND], Logic OR[WOR, DWOR], Logic Exclusive

OR [WXOR, DWXOR]

1)Summary
Do logic AND, OR, XOR for data

Logic AND [WAND, DWAND]

16 bits WAND 32 bits DWAND
Execution Normally ON/OFF, Suitable XG1, XG2
condition rising/falling edge Models
Hardware - Software -
requirement requirement
Logic OR[WOR,DWOR]
16 bits WOR 32 bits DWOR
Execution Normally ON/OFF, Suitable XG1, XG2
condition rising/falling edge Models
Hardware - Software -
requirement requirement
Logic Exclusive OR [WXOR,DWXOR]
16 bits WXOR 32 bits DWXOR
Execution Normally ON/OFF, Suitable XG1, XG2
condition rising/falling edge Models
Hardware - Software -
requirement requirement

2) Operands
Operands | Function Data Type
S1 The operation data address 16bits/32bits,BIN
S2 The operation data address 16bits/32bits,BIN
D The result address 16bits/32bits,BIN

3)Suitable soft components

Operan Word soft elements Bit soft elements
ds System Consta | Modul System
nt
DIF| T|C|D/ D|D|D| KH I Q| X|Y|M|S|T|C| Dn
DIDID|IX|Y| M|S D| D m
S1 o oo | 0o 0| 0| 0 |0 °
S2 e oo | 0o 0| 0| o |0 °
D ° o | o o | o | o

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M,HM,SM; S includes S;HS; T

includes T,HT; C includes C, HC.

112

Description

<Logic AND >

0 (s1) (s29) 0&0=0 0&1=0
P% WAND | D10 | D12 | D14 | 1&0=0 1&1=1
<Logic OR >

o () () 00r0=0 0 or 1=1
— WOR | D10 | D12 | D14 | 1oro=1 1or1=1
< Logic WXOR >

X0 @ @ 0 xor 0=0 O xor 1=1
- WXOR | D10 | D12 | D14 | L xor 0=1 1 xor 120

If use this instruction along with CML instruction, XOR NOT operation could also be

executed.
() (29 (o)
D10 D12

F(o
WXOR D14
E cML ‘ D14 ‘ D14 ‘

Example 1:

Thelé6 bits data is composed by X0~X7, and store in DO.
MO

HT% MOV DX0 DO \

Transform the state of X0, X1, X2, X3 to 8421 code and store in DO.
MO

HT% WAND DXO HOF DO \

Example 2:
Combine the low 8 bits of DO and D2 to a word.

WAND DO HFF D10 |

&

WAND D2 HFF D12 |-

SWAP D12 -

I

WOR D10 D12 D20 |+

113

LDP X0
WAND DO
WAND D2
SWAP D12
WOR D10

/IX0 rising edge

//Logic and, take the low 8 bits of DO and save in D10
/I Logic and, take the low 8 bits of D2 and save in D12

/Iswap the low 8 bits and high 8 bits of D12

HFF D10
HFF D12
D12 D20

and save in D20

4-6-8 Logic converse [CML, DCML]

1) Summary

Logic converse the data

/lcombine the low 8 bits of D10 and high 8 bits of D12,

Converse [CML,DCML]

16 bits CML 32 bits DCML
Execution Normally ON/OFF, Suitable XG1, XG2
condition rising/falling edge Models
Hardware - Software -
requirement requirement
2)Operands
Operands | Function Data Type
S Source data address 16 bits/32 bits, BIN
D Result address 16 bits/32 bits, BIN

3)Suitable soft components

Operan Word soft elements Bit soft elements
ds System Consta | Modul System
nt
DIF| T|C|D/ D|D|D| KH I Q| X|Y|M|S|T|C| Dn
DIDID|IX|Y| M|S D| D m
S o/ o | o | o | o ° ° ° °
D ° e | o ° o | o

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;

DM includes DM, DHM; DS includes DS, DHS. M includes M,HM,SM; S includes S,HS;
T includes T,HT; C includes C, HC.

Description

CML \ DO ‘DYO‘

s
A

114

Do\o\1\0\1\0\1\0\1\0\1\0\1\0\1\0\1\
oy O

[2[o]efofs]ofe]ofs]ofs]o]1]of1]o]

Y17 Y7 Y6 Y5 Y4

e Each data bit in the source device is reversed (1—0, 0—1) and sent to the destination device.
If use constant K in the source device, it can be auto convert to be binary.
e This instruction is fit for PLC logical converse output.

<Read the converse input>
X0
R
X2
M2 Q@OL{ cML | Dxo | Dmo |
3
e

X17 @

e The sequential control instruction in the left could be denoted by the following CML
instruction.

4-6-9 Negative [NEG, DNEG]

1) Summary
Get the negative data

Negative [NEG,DNEG]

16 bits NEG 32 bits DNEG
Execution Normally ON/OFF, Suitable XG1, XG2
condition rising/falling edge Models

Hardware - Software -
requirement requirement

2) Operands

Operands | Function Data Type

D The source data address 16 bits/ 32 bits, BIN

3) Suitable soft components

Operan Word soft elements Bit soft elements
ds System Consta | Modul System
nt €
DIF| T|C|D D|D|D| KH I Q| X|Y|M|S|T|C| Dn
D DID|X|Y|M]|S D| D m
D ° o | o ° ° °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS. M includes M,HM,SM:S includes S,HS;T
includes T,HT;C includes C, HC.

Description

J(/Tl}o—{ NEG | D10 | (DI0) +1—» (D10)

e Converse each bit of source data (1—0, 0—1), then plus one and store the result in the source
data address.

e For example, the source data D10 is 20, when MO rising edge is coming, D10 become -20.

The following two instructions are the same.

MO
it NEG D10 -
MO

4 SUB KO D10 D10 —

4-7 Shift Instructions

Mnemonic | Function Chapter
SHL Arithmetic shift left 4-7-1
SHR Arithmetic shift right 4-7-1
LSL Logic shift left 4-7-2
LSR Logic shift right 4-7-2
ROL Rotation left 4-7-3
ROR Rotation right 4-7-3
SFTL Bit shift left 4-7-4
SFTR Bit shift right 4-7-5
WSFL Word shift left 4-7-6
WSFR Word shift right 4-7-7

4-7-1 Arithmetic shift left [SHL,DSHL], Arithmetic shift right [SHR,DSHR]

1) Summary
Do arithmetic shift left/right for the numbers

Arithmetic shift left [SHL,DSHL]

16 bits SHL 32 bits DSHL
Execution Normally ON/OFF, Suitable Models | XG1, XG2
condition rising/falling edge

Hardware - Software -

116

requirement | | requirement |

Arithmetic shift right [SHR,DSHR]

16 bits SHR 32 bits DSHR
Execution Normally ON/OFF, Suitable Models | XG1, XG2
condition rising/falling edge
Hardware - Software -
reguirement reguirement

2) Operands
Operands | Function Data Type
D The source data address 16 bits/32 bits,BIN
n Shift left or right times 16 bits/32bits,BIN

3) Suitable soft components

Operan Word soft elements Bit soft elements
ds System Consta | Modul System
nt e
DIF|T|C|D|D|D|D| KH I | Q| X|Y|[M|S|T|C| Dn
D DID|X|Y|M]|S D| D m
D o o o | o o | o | o
n °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS. M includes M,HM,SM:S includes S,HS; T
includes T,HT;C includes C, HC.

Description

After executing SHL once, the lowest bit is filled with 0, the last bit is stored in carry flag.
After executing SHR once, the highest bit is the same; the last bit is stored in carry flag.

< Arithmetic shift left >

117

0 :

M
‘Hi SHL DO K4
i Move
Highest Lowest
bit left bit
—a[1l 1f a[1[1] 1] 1[o[o] of o 0] 0] 0] 0
i Bitn
L—» SM22 i
JL
77777777777777 ‘ Execute once
Highest Lowest
bit bit
" 1[1[1] 1] o[o[o of o] o] o[o] o] o] o 0

1 SM22
<Arithmetic shift right>
M1 n
ﬂi SHR DO K4
. Move
Highest right Lowest
bit - bit
(a[1] af 1] [1] [1] o[o] o[o o] o] o] 0
Bit n i J
1| SM22
|
,,,,,,,,,,,,, .
@ Execute i
Highest once Lowest |
bit bit |
Lalalaf af af 1[4l 2l 4]] 2] 4] o] o[o] o] |
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
|
SM22 0 |=-

4-7-2 Logic shift left [LSL], Logic shift right [LSR]

1) Summary
Do logic shift right/left for the data

Logic shift left [LSL, DLSL]

16 bits LSL 32 bits DLSL
Execution Normally ON/OFF, Suitable XG1, XG2
condition rising/falling edge Models

Hardware - Software -
requirement requirement

Logic shift right [LSR,DLSR]

16 bits LSR 32 hits DLSR
Execution Normally ON/OFF, Suitable XG1, XG2

118

condition

rising/falling edge

Models

Hardware
reguirement

Software

reguirement

2) Operands
Operands | Function Data Type
D Source data address 16 bits/32 bits, BIN
n Arithmetic shift left/right times 16 bits/32bit, BIN

3) Suitable soft components

Operan Word soft elements Bit soft elements
ds System Consta | Modul System
nt e
DIF| T|C|D/ D|D|D| KH I Q| X|Y|M|S|T|C| Dn
D/ DID|X|Y|M]|S D| D m
D o o o | o o | o | o
n °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS. M includes M,HM,SM:S includes S,HS; T
includes T,HT;C includes C, HC.

Description

e After executing LSL once, the lowest bit is filled with 0; the last bit is stored in carry flag.
e LSL meaning and operation are the same to SHL.
e After executing LSR once, the highest bit is filled with 0; the last bit is stored in carry flag.

e LSR and SHR are different, LSR add 0 inthe highest bit when moving, SHR all bits are

moved.
< Logic shift left > < Logic shift right >
VAP VS
MO D) oo M1)
}—{ﬂi LSL | DO K4 }—{ﬂi LSR | DO K4
Highest Lowest Highest . Lowest
bit Mave left bit bit Move right bit
—1[1[1[1]1[1]1]1]olofofol0l0[0]0] ‘1f1]1][1]1]1]171]o0l0f0l0folof0l0]
N bits N bits
Ll SM22 SM22 |«
@ After @ After
Highest executing Lowest Highest executing Lowest
bit once bit once bit

it
‘1[1]1]1]00fofolololo]0f0f0l0]0]

SM22

‘ofofolof1][1]1]1][1][1]1][1]0l0]0]0]

119

SM22 0

4-7-3 Rotation shift left [ROL,DROL], Rotation shift right [ROR,DROR]

1)Summary

Cycle shift left or right

Rotation shift left [ROL, DROL]

16 bits ROL 32 bits DROL

Execution rising/falling edge Suitable XG1, XG2

condition Models

Hardware - Software -

requirement requirement

Rotation shift right [ROR, DROR]

16 bits ROR 32 bits DROR

Execution rising/falling edge Suitable XG1, XG2

condition Models

Hardware - Software -

requirement requirement
2) Operands

Operands | Function Data Type

D Source data address 16 bits/32 bits, BIN

n Shift right or left times 16 bits/32 bits, BIN
3)Suitable soft components
Operan Word soft elements Bit soft elements
ds System Consta | Modul System

nt
DIF|T|C|D|D|D|D| KH I | Q| X|Y|[M|S|T|C| Dn
DIDID|X|]Y|M]|S D| D m

D o o o | o o | o | o
n °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS. M includes M,HM,SM:S includes S,HS; T
includes T,HT;C includes C, HC.

Description

e When X0 changes from OFF to ON, the value will be cycle moved left or right, the last bit is
stored in carry flag.

< Cycle shift left>

< Cycle shift right>

120

’/7\\

%0 b
}—{ﬂi ROL DO K4
Highest Lowest

bit Cycle move left bit

—a[11]1[1[2]1]1]0fololo]o0l0]0]0O]

N bits
—» SM22
@ After
fighest executing Lowest
bit once bit

1[1]1]1][ofofololofololof1][1]1]1]

Y
(B n

X0
A~ ROR DO K4
Highest _ Lowest
bit Cycle move right bit
(1f1l1f1]1]1][1]1l0l0l0l0l0l0l0]0}
N bits
SM22 =
@ After
Highest executing Lowest
bit once bit

>_<0\0\0\0\1\1\1\1\1\1\1\1\0\0\0\0\

1 SM22 SM22 0 =
4-7-4 Bit shift left [SFTL]
1) Summary
Bit shift left
Bit shift left [SFTL]
16 bits SFTL 32 bits -
Execution rising/falling edge Suitable XG1, XG2
condition Models
Hardware - Software -
requirement requirement
2) Operands
Operands | Function Types
S Source soft element head address bit
D Target soft element head address bit
nl Source data quantity(no more than 1024) 16 bits, BIN
n2 Shift left times(no more than 1024) 16 bits, BIN
3) Suitable soft components
Operands Word soft elements Bit soft elements
System Constant | Module System
D|FD|TD|CD | DX | DY | DM | DS KMH DIQDIX|Y| M|S|T Dnm
S °
D
nl ° °
n2 o | o | o ° ° ° ° ° °

121

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.M includes M, HM, SM; S includes S, HS;
T includes T, HT; C includes C, HC.

Description

e Move n2 bits left for the object which contains n1 bits.
o When X0 changes from OFF to ON, the instruction will move n2 bits for the object.
e For example, if n2 is K1, the object will move 1 bit left when the instruction executes once.

ni 2
}_WH SFTL | xo | MO | K16 | K4 |

n2 bit left [x3[x2[xi]xo]
Fhift

[M15[m14 [m13 [M12 [M11 [M10] M9 [M8 [M7 | M6 [M5 | M4‘l\‘ll3‘ MVZ‘MI‘ MVO‘
R_“~ R_“ _“ _“
® @ ® @

X 3~X 0—»M3~M0

M 3~M 0—-M7~M4

M 7~-M 4—-M11~M8
M11~M 8—>M15~M 12
M15~M12—Overflow

@®OOO

4-7-5 Bit shift right [SFTR]

1) Summary

Bit shift right
Bit shift right [SFTR]
16 bits SFTR 32 bits -
Execution rising/falling edge Suitable XG1, XG2
condition Models
Hardware - Software -
requirement requirement

2)Operands
Operands | Function Data Type
S Source soft element head address bit
D Target soft element head address bit
nl Source data quantity(no more than 1024) 16 bits, BIN
n2 Shift right times(no more than 1024) 16 bits, BIN

3) Suitable soft components

122

Operands Word soft elements Bit soft elements
System Constant | Module System
D/ FD|TD|CD|DX|DY|DM| DS KH DIQD|X|Y|M|S|T|C|Dnm
S ° °
D e o |0 |00
nl
n2 ° ° ° ° ° °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.M includes M, HM, SM; S includes S, HS;

T includes T,

HT; C includes C, HC.

Description

° Move n2

bits right for the object which contains nl bits.

e When X0 changes from OFF to ON, the instruction will move n2 bits for the object.
o For example, if n2 is 1, the object will move 1 bit right when the instruction executes once.

nl n2

X0
SFTR

‘XO‘MO‘Klﬁ‘K4‘

X3 | X2 | X1 | X0

n2 bit right

® X3~X 0—~M15~M12
® M15~M12—-M11~M8
®) M11~M 8—~M7~M4

o _ shift @ M7~M4—~M3~M0
‘MlS‘MlV4‘M‘13‘M;Z‘Mll‘MlO‘ Mo [M8 [M7 [M6 ms[ma[m3]m2]mi]mo| ® M3~MO0—overflow
N A A
@) ® ©) ®
4-7-6 Word shift left [WSFL]
1) Summary
Word shift left
Word shift left [[WSFL]
16 bits WSFL 32 bits -
Execution rising/falling edge Suitable XG1, XG2
condition Models
Hardware - Software -
reguirement reguirement

2) Operands
Operands | Function Data Type
S Source soft element head address 16 bits, BIN
D Target soft element head address 16 bits, BIN
nl Source data quantity(no more than 512) 16 bits, BIN

123

[n2 | Word shift left times (no more than 512)

| 16 bits, BIN

3) Suitable soft components

Operan Word soft elements Bit soft elements
ds System Consta | Modul System
nt e
D|F|T|C|D|D|D|D| KH I | Q[X|Y|M|S|T|C| Dn
DIDID|X|Y|M D| D m
S ol o o | o
D ol o | o | o
nl o/ o | o | o | 0|0 | @ °
n2 e/ o | o | o | 0|0 | o °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM; S includes S, HS;
T includes T, HT; C includes C, HC.

Description

e Move n2 words left for the object which contains n1 words.
e When X0 changes from OFF to ON, the instruction will move n2 words for the object.

%0 @ nl n2
%WSFL DO ‘Dlo‘ K16‘ K4 ‘

n2 word
left shift

D3| D2 | D1 | DO

A N A A
[D25 | D24 [D23 | D22 [D21 [D20 D19[D18 D17 [D16 | D15 | D14[D13] D12] D11] D10|

\-/v
N~ e~ RS

® ®

®

N
@

©)

@O D 3~D 0—D13~D10

@ D13~-D10—D17~-D14
(3 D17~-D14—D21~D18
@ D21~D18—D25~D22
® D25~D22—overflow

® In the above example, D10~D25 (a total of 16 registers) is used to receive the value
transmitted from DO~D3. Each time the rising edge of X0 comes, the value of DO~D3 is
transmitted to D10~D13, the value of the original DO~D13 is moved left to D14~D17, the
value of the original D14~D17 is moved left to D18~D21,... And so on, and the value of the
original D22~D25 overflows.

4-7-7 Word shift right [WSFR]

1)Summary

Word shift right
Word shift right [WSFR]
16 bits WSFR 32 bits -
Execution rising/falling edge Suitable XG1, XG2
condition Models
Hardware - Software -
reguirement reguirement

124

2)Operands

Operands | Function Data Type

S Source soft element head address 16 bits, BIN
D Target soft element head address 16 bits, BIN
nl Source data quantity(no more than 512) 16 bits, BIN
n2 Shift right times(no more than 512) 16 bits, BIN

3)Suitable soft components

Operan Word soft elements Bit soft elements
ds System Consta | Modul System
nt e
DIF|T|C|D|D|D|D| KH | Q[X|Y|M|S|T|C| Dn
D/ DID|X|Y|M]|S D| D m
S o o o | @
D el o | o | o
nl o/ oo | 0o | 0o | 0| 0 |0 °
n2 o/ oo | 0o | 0| 0| 0 |0 °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;

DM includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM; S includes S, HS;
T includes T, HT; C includes C, HC.

Description

e Move n2 words right for the object which contains nl words.
e When X0 changes from OFF to ON, the instruction will move n2 words for the object.

X0 (s9) noon
}_m_{WSFR DO | D10 | K16 | K4 |

n2 word right

1
D3 | D2 | D1 | DO Shlft

@

e

@ D 3~D 0—D25~D22

@ D25~D22—~D21~D18
3 D21~D18—~D17~D14
@ D17~D14—D13~D10
(® D13~D10—overflow

y y y
| D25 [D24 [D23 | D22 [D21 [D20 | D19 [D18 [D17 | D16 [D15 | D14] D13] D12 D11 [D10]
v

T A
@ ® @

A
®

® In the above example, D10~D25 (a total of 16 registers) is used to receive the value
transmitted from DO~D3. Each time the rising edge of X0 comes, the value of DO~D3 is
transmitted to D22~D25, the value of the original D22~D25 is moved to D18~D21, the value
of the original D18~D21 is moved to D14~D17,... And so on, and the value of the original
D13~D10 overflows.

125

4-8 Data Convert

Mnemonic Function Chapter

WTD Single word integer converts to double 4-8-1
word integer

DWTD double word integer to four word integer 4-8-1

BDWTD 32 bits integer t064 bits integer batch 4-8-2
conversion

FLT 16 bits integer converts to float point 4-8-3

DFLT 32 bits integer converts to float point 4-8-3

FLTD 64 bits integer converts to float point 4-8-3

DFLTD 32 bits integer to double precision 4-8-4
floating point

QFLTD 64 bits integer to double precision 4-8-4
floating point

INT Float point converts to integer 4-8-5

DINTD Double - precision floating point t032 4-8-6
bits integer

QINTD Double - precision floating point to64 4-8-6
bits integer

ECON Single precision floating point to double 4-8-7
precision floating point

BECON Single precision floating point to double 4-8-8
precision floating point batch conversion

BIN BCD convert to binary 4-8-9

BCD Binary converts to BCD 4-8-10

ASCI Hex. converts to ASCII 4-8-11

HEX ASCII converts to Hex 4-8-12

DECO Coding 4-8-13

ENCO High bit coding 4-8-14

ENCOL Low bit coding 4-8-15

GRY Binary converts to gray code 4-8-16

GBIN Gray code converts to binary 4-8-17

4-8-1 Single word integer converts to double word integer [WTD, DWTD]

1) Summary

Single word integer converts to double word integer [WTD.DWTD]

16 bits WTD

Execution Normally ON/OFF, Suitable XG1, XG2
condition rising/falling edge Models

Hardware - Software -
requirement requirement

32 bits DWTD

Execution Normal ON/OFF/falling | Suitable XG2
condition or rising pulse edge Models

126

Hardware Version VV3.7.1 or later Software Version VV3.7.4a or later

reguirement reguirement
2) Operands
Operands | Function Data Type
S Source soft element address 16 bits/32 bits, BIN
D Target soft element address 32 bits/64 bits, BIN

3) Suitable soft components

Operan Word soft elements Bit soft elements
ds System Consta | Modul System
nt e
DlF|T|C|D|D|D|D| KH I | Q[X|Y|M|S|T|C| Dn
D DID|X|Y|M]|S D| D m
S o/ o | o | 0| 0| 0| o |0
D ° o | o o | o | o

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM; Sincludes S, HS; T
includes T, HT; C includes C, HC.

Description

<16 bits instruction>

3 o
%H WTD \ DO \ D10 \ (D0) — (D11, D10)

Single Word Double Word

0orl

D11 D10
| High bit | Low bit |

® When single word DO is positive integer, after executing this instruction, the high bit of
double word D10 is 0.

® When single word DO is negative integer, after executing this instruction, the high bit of
double word D10 is 1.

® the high bit 0 and 1 is binary value.

<32 bits instruction>

. &
P DWTD ‘

(D1,D0)—(D13,D12,D11,D10)
Double word four word

Do | D10 |

127

32bit 0 or 1| (D1,D0)

D13D12 D11.D10
| High bit | Low bit |

® When single word DO is positive integer, after executing this instruction, the high bit of
four word D10 is 0.
® \When single word DO is negative integer, after executing this instruction, the high bit of

four word D10 is 1.
® the high bit 0 and 1 is binary value.

4-8-2 32 bits integer to 64 bits integer batch conversion [BDWTD]

1) Summary
32 bits integer to 64 bits integer batch conversion [BDWTD]
32 bits BDWTD
Execution Normal ON/OFF/falling | Suitable XG2
condition or rising pulse edge Models
Hardware Version V3.7.1 or later Software Version V3.7.4a or later
requirement requirement

2) Operands

Operands | Function Data Type

S Specify the source data or register’s address 32 bits ,BIN
code

D Specify the target soft component’s address 64 bits ,BIN
code

N Specify the value of the transfer point 16 bits ,BIN

3) Suitable soft components

Operan Word soft elements Bit soft elements
ds System Consta | Modul System
nt e
D|F| T|C|D|D|D|D| KH |[I|Q|X|Y|M|SI T C| Dn
DIDID|X|]Y|M]|S D| D m

S o o
D °
n [] [] [] [] [] [] []

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM:; S includes S, HS; T
includes T, HT; C includes C, HC.

128

Descriptio

n

® Converts n-point data starting with the source-specified soft element to n-point soft element
starting with the target-specified soft element as a data block. (When the soft component
number range is exceeded, convert to the extent possible).

X0
% BDWTD ‘

©

n

DO‘DlO‘KB‘

D1,D0 D13,D12,D11,D10

D3,D2 D17,D16,D15,D14

D5,D4 D21,D20,D19,D18
Double word Four word

® According to the method of overlapping numbering, the commands are automatically
transmitted in the order of (1) to (3) in order to prevent the transmission source data from
being overwritten when the transmission number ranges overlap as shown in the figure below.

F{(}l—{BDWTD DO ‘ D2 ‘ K3 ‘

D1,D0 O _| D5,D4,D3,D2
D3.D2 g — D9,D8D7.D6
D5, D4 — D13,012,D11,010

Note: The address of the four-word integer register in the BDWTD instruction must be even.

4-8-3 Integer converts to float point [FLT, DFLT,FLTD]

1)Summary
bit integer converts to float point [FLT, DFLT,FLTD]
16 bits FLT | 32 bits DFLT 64 bits | FLTD
Execution Normally ON/OFF, Suitable XG1, XG2
condition rising/falling edge Models
Hardware - Software -
reguirement requirement
2) Operands
Operands | Function Data Type
S Source soft element address 16 bits/32 bits/64 bits,BIN
D Target soft element address 32 bits/64 bits,BIN

3) Suitable soft components

Operan Word soft elements Bit soft elements
ds System Consta | Modul System
nt e
DIF| T|C|D|D|D|D KMH | Q| X|Y|M|S|T|C| Dn
DIDID|IX|Y| M|S D| D m

129

n=3

S o o

D °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM:; S includes S, HS; T
includes T, HT; C includes C, HC.

Description

<16 bits instruction>

X0 @ (D10) — (D13,D12)
P FLT ‘ D10 ‘ D12 ‘ BIN integer Binary float point

<32 bits instruction >

)
5 - s
X0 (D11,D10) (D13,D12)
DFLT ‘ b10 ‘ D12 ‘ BIN integer Binary float point

<64 bits instruction>

0
—— FLTD | D10 | D14 | BIN integer Binary float point

H (s (D13,D12,D11,D10) — (D15,D14)
°

Convert BIN integer to binary floating point. As the constant K, H will auto convert by the
floating operation instruction, so this FLT instruction can’t be used.

® The inverse transformation instruction is INT.

FLTD can change the64 bits integer t032 bits floating value.

® The S operand of the FLTD instruction does not support constant K/H.

‘ X0
I FLT DO D10

DO is integer 20, after executing the instruction, D10 is floating value 20.

Note: Before using floating number operation instructions such as EADD, ESUB, EMUL,
EDIV, EMOV and ECMP, make sure that all operation parameters are floating number.

130

4-8-4 Integer to double precision floating point[DFLTD,QFLTD]

1) Summary
integer to double precision floating point[DFLTD,QFLTD]
32 hits DFLTD 64 bits QFLTD
Execution Normal ON/OFF/falling Suitable Models | XG2
condition or rising pulse edge
Hardware Version V3.7.1 or later Software Version V3.7.4a or later
requirement requirement

2) Operands
Operands | Function Data Type
S Source soft element address 32 bits/64 bits, BIN
D Target soft element address 64 bits, BIN

3) Suitable soft components

Operan Word soft elements Bit soft elements
ds System Consta | Modul System
nt e
DIF| T|C|D/ D|D|D| KH I Q| X|Y|M|S|T|C| Dn
DIDID|X|Y|M]|S D| D m
S o| o
D °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM; S includes S, HS; T
includes T, HT; C includes C, HC.

Description

<32 bits instruction >

D) (D11,D10,)—(D15,D14,D13,D12)

X0
P DFLTD ‘ b10 ‘ D12 ‘ BIN integer Binary float point

<64 bits instruction>

(s9) (D13,D12,D11,D10)—(D17,D16,D15,D14)

X0
P QFLTD ‘ b10 ‘ D14 ‘ BIN integer Binary float point

® An instruction to convert binary integer values to binary floating-point values. Constants

K and H are automatically converted in each floating-point operation instruction, and
FLT instruction can not be used.

The inverse transformation of this instruction is DINTD/QINTD.

QFLTD instruction converts 64-bit integer to 64-bit floating-point number. (Note: the

address of the operand in the QFLTD instruction must be even.)
® The S operand of the QFLTD instruction does not support constant K/H.

131

4-8-5 Float point converts to integer [INT, DINT]

1)Summary
Floating point converts to integer [INT, DINT]
16 bits INT 32 bits DINT
Execution Normally ON/OFF, Suitable XG1, XG2
condition rising/falling edge Models
Hardware - Software -
requirement requirement
2) Operands
Operands | Function Data Type
S Source soft element address 16 bits/32 bits, BIN
D Target soft element address 16 bits/32 bits, BIN
3) Suitable soft components
Operan Word soft elements Bit soft elements
ds System Consta | Modul System
nt e
D|F| T|C|D|D|D|D| KH |[I]|Q|X|Y|M|ST|IC| Dn
DIDID|X|Y|M]|S D| D m
S o| o
D °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM; S includes S, HS; T
includes T, HT; C includes C, HC.

Description

<16 bits instruction> (D11,D10) — (D20)

X0 @ Binary Float ~ BIN integer
INT ‘ D10 ‘ D20 ‘ Give up the data after the decimal dot

<32 bits instruction>

H (s) (D11,D10) — (D20,D21)
°

(H DINT | D10 | D20 | Binary Float BIN integer

Give up the data after the decimal dot
The binary source number is converted into a BIN integer and stored at the destination device.

Abandon the value behind the decimal point.

® The inverse instruction is FLT.

When the result is 0, the flag bit is ON.

® The result is over below data, the carry flag is ON.
16 bits operation: -32,768~32,767
32 bits operation: -2,147,483,648~2,147,483,647

132

‘ X0
i INT DO D10

For example, if DO is floating value 130.2, after executing INT, D10 value is integer 130.

4-8-6 Double - precision floating point to integer[DINTD,QINTD]

1) Summary
floating point to integer [DINTD,QINTD]
32 hits DINTD 64 bits QINTD
Execution Normal ON/OFF/falling Suitable Models | XG2
condition or rising pulse edge
Hardware Version V3.7.1 or later Software Version V3.7.4a or later
reguirement reguirement
2) Operands
Operands | Function Data Type
S Source soft element address 64 bits, BIN
D Target soft element address 32 bits/64 bits,BIN

3) Suitable soft components

Operands Word soft elements Bit soft elements

System Constant | Module System

D|FD|TD | CD | DX | DY | DM | DS KH DQD|X|Y M|S|T|C|Dnm

S o o

D

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM; Sincludes S, HS; T
includes T, HT; C includes C, HC.

Description

<32 bits instruction>

0 (s9) (D13,D12,011,D10) —~ (D21,D20)
P% DINTD | D10 | D2 | Binary Float BIN integer

Give up the data after the decimal dot

<64 bits instruction>
@ (D13,D12,D11,D10)— (D23,D22,D021,D20)

F{(P_{ QINTD ‘ D10 ‘ D20 ‘ Binary Float BIN integer

Give up the data after the decimal dot

133

® The binary source number is converted into a BIN integer and stored at the destination device.
Abandon the value behind the decimal point.

The inverse instruction is DFLTD/QFLTD.
For 64-bit instructions, the register address number must be even.
When the result is 0, the flag bit is ON.
The result is over below data, the carry flag is ON.

64 bits operation: -9223372036854775808~9223372036854775807 .

4-8-7 Single precision floating point to double precision floating pointfECON]

1) Summary

Single precision floating point to double precision floating point [ECON]

requirement

32 hits DINTD

Execution Normal ON/OFF/falling Suitable Models | XG2

condition or rising pulse edge

Hardware Version VV3.7.1 or later Software Version V3.7.4a or later

requirement

2) Operands

Operands | Function Data Type

S Source soft element address 32 bits, BIN

D Target soft element address 64 bits, BIN
3) Suitable soft components
Operands Word soft elements Bit soft elements

System Constant | Module System
D/ FD|TD|CD|DX|DY|DM| DS KMH DIQD|IX|Y|M|S|T|C|Dnm

S o | o
D °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM; S includes S, HS; T
includes T, HT; C includes C, HC.

Descr

iption

X0

}7

ECON

€D
DO

D10

(D1,D0)

- (D13,D12,D11,D10)Single

precision floating point ~ double precision floating point

® When XO turns on, the single-precision floating-point value in the source data address is
converted into a double-precision floating-point value and stored in the target address.

® Register addresses for double - precision floating - point numbers must start with an even
number.

134

4-8-8 Single precision floating point to double precision floating point batch

conversion [BECON]
1) Summary

conversion[BECON]

Single precision floating point to double precision floating point batch

reguirement

reguirement

32 bits BECON

Execution Normal ON/OFF/falling Suitable XG2

condition or rising pulse edge Models

Hardware Version V3.7.1 or later Software Version V3.7.4a or later

2) Operands
Operands | Function Data Type
S Specify the source data or register’s address 32 bits, BIN
code
D Specify the target soft component’s address 64 bits, BIN
code
N Specify the value of the transfer point 16 bits, BIN

3) Suitable soft components

Operand Word soft elements Bit soft elements
S System Consta | Modul System
nt e
DIFf T|C|D D|D| KH I Q| X|Y|M|S|T|C| Dn
DD|D| X M| S D| D m

S oo
D °
n [] [J [J [} [J [J [J

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM; S includes S, HS; T

includes T, HT; C includes C, HC.

Description

® According to a scheme, n-point data starting with a source-specified software component is
transferred as a data block to an N-point software component starting with a target-specified
software component. (When the soft component number range is exceeded, convert to the

extent possible).

135

n

X0 &)
P% BECON \ DO

‘DlO‘KS‘

D1,D0

D3,D2

D13,D12,D011,D10

D5,D4

D17,D16,D15D14

Single precision

D21,D020,D019,D18

Double precision

® When the transmission number range overlapped, in order to prevent the transmission source
data rewriting without conversion, the command will be automatically transmitted in the

order of (1)~(3).

PL{ BECON‘ DO ‘ D2 ‘ K3 ‘

D1,D0

D3,D2

S

n=3

| D5,D4,D3,D2

-— D9,D8,D7,D6

D5,D4

®e

= D13,D12,D11,D10

Note: The register header address of a double - precision floating-point must be even.

4-8-9 BCD convert to binary [BIN]

1) Summary
BCD convert to binary [BIN]
16 bits BIN 32 bits -
Execution Normally ON/OFF, Suitable XG1, XG2
condition rising/falling edge Models
Hardware - Software -
regquirement requirement
2) Operands
Operands | Function Data Type
S Source soft element address BCD
D Target soft element address 16 bits, BIN
3) Suitable soft components
Operands Word soft elements Bit soft elements
System Constant | Module System
D|FD|TD|CD| DX | DY |DM| DS KH DA | X|Y | M|S|T|C|Dnm
S o | o ° ° ° ° ° °
D ° ° ° ° ° °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM:; S includes S, HS; T
includes T, HT; C includes C, HC.

136

Description

0 BIN ‘ D10 ‘ Do ‘ Source (BCD) — destination (BIN)

.H CONICD

If source data is not BCD code, SM409 will be ON (Operation error), SD409=4 (error
occurs).

® As constant K automatically converts to binary, so it’s not suitable for this instruction.

® For example: all the information stored in the clock information register SD13~SD19 of PLC
is BCD code, but we are used to using decimal value. The time information can be converted
from BCD code information to binary:

SMO
f BIN SD13 DO
Normally on
coil SD13: second 0~59

— BIN SD14 D1 |
SD14: minute 0~59

— BIN SD15 D2
SD15: hour 0~23

— BIN SD16 D3
SD16: day 1~31

— BIN SD17 D4
SD17: month 1~12

— BIN SD18 D5
SD18: year 00~99

—] BIN SD19 D6 [
SD19: week Sunday~6

137

4-8-10 Binary convert to BCD [BCD]

1) Summary

Convert binary data to BCD code

Binary convert to BCD [BCD]

16 bits BCD 32 bits -
Execution Normally ON/OFF, Suitable XG1, XG2
condition rising/falling edge Models
Hardware - Software -
requirement requirement
2) Operands
Operands | Function Data Type
S Source soft element address 16 bits, BIN
D Target soft element address BCD code
3) Suitable soft components
Operands Word soft elements Bit soft elements
System Constan | Module System
t
Dl F |TD| C |DX| DY | DM | DS KH | |QD | X|Y|M|S|T C Dhm
D D
S ° ° ° ° ° ° °
D o | o ° ° °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM

includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM; Sincludes S, HS; T
includes T, HT; C includes C, HC.

Description
. o
— BCD \ D10 \ DO \

source (BIN)—destination (BCD)

® This instruction can change the binary value to BCD code.

® For example, the PLC clock information registers SD13 to SD19 store BCD code, which
we're used to using decimal values, so you can use the BCD instruction to correct the clock

information in the registers SD13 to SD19.

138

4-8-11 Hex converts to ASCII [ASCI]

SMO

—
Normally on
coil

BIN

| oo |

SD13

SD13: second 0~59

BIN

| ot |

SD14

SD14: minute 0~59

BIN

| D2 |

SD15

SD15: hour 0~23

BIN

| D3 |

SD16

SD16: day 1~31

BIN

| D+ |

SD17

SD17: month 1~12

BIN

| o5 |

SD18

SD18: year 00~99

BIN

\ D6 \SD19

r . r 1 [T T

SD19: week Monday~Sunday

1) Summary
Hex. convert to ASCII [ASCI]
16 bits ASCI 32 bits -
Execution Normally ON/OFF, Suitable XG1, XG2
condition rising/falling edge Models
Hardware - Software -
requirement requirement
2) Operands
Operands | Function Data Type
S Source soft element address 2 bits, HEX
D Target soft element address ASCII code
n Transform character quantity 16 bits, BIN
3)Suitable soft components
Operands Word soft elements Bit soft elements
System Constant | Module System
D|FD|TD | CD | DX | DY | DM | DS KH DD | X|Y|M|S|T|C|Dnm
S o| o | o ° ° ° ° °
D ° ° ° ° °
n [] [] [] [] [] [] []

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM: S includes S, HS; T
includes T, HT; C includes C, HC.

139

Description

D100 \ D200 \ K4 \

HOH{ e © n

® D transform the source Hex data to ASCII code, and store in S . The transformation chacters
aren.

® D will store one ASCII code.

® The convert process is this

Assign start device: [0]=30H [1]=31H

[7]=37H [C]=43H
[4]=34H [8]=38H

b " Ikl | K2 | K3 | K4 | K5 |K6 | K7 |K8 | K9
D200 down | [C] | [B] [[A] [[O] [[4] |[3]1 [[2] |[1] |[8]
D200 up [C]|[B] [[A] | 0] | [4] |[I[3] |[2] |I[A]
D201 down crlmrliarlmor 1141 1131 1121
D201 up [C] | [B] [[A] |[O] [[4] |I[3]
D202 down [c1 181 |[A1]101 |14]
D202 up [c1 |81 1Al][0]
D203 down [c1 181 | [A]
D203 up [C] | [B]
D204 down [C]

4-8-12 ASCII convert to Hex [HEX]

1)Summary
ASCII converts to Hex [HEX]
16 bits HEX 32 bits -
Execution Normally ON/OFF, Suitable XG1, XG2
condition rising/falling edge Models
Hardware - Software -
requirement requirement

2) Operands

Operands | Function Date type
S Source soft element address ASCII
D Target soft element address 2 bits, HEX

140

[n | ASCII Character guantity | 16 bits, BIN |

3) Suitable soft components

Operands Word soft elements Bit soft elements
System Constan | Module System
t
DIF| T|CD| D| D | D |Ds KH I QD[X|Y|M|S|T|C
D| D XY | M D
S oo | o | o ° ° ° '
D ° ° ° ° ° °
n °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM:; S includes S, HS; T
includes T, HT; C includes C, HC.

Description

) (o) m

HX(})—{ HEX \ D200 \ D100 \ K4 \

® Convert the high 8 bits and low 8 bits in source (52 to HEX data. Move 4 bits every time
to destination .

® The convert character number is assigned by n.

The convert process is the following:

S) TASCH| HEX 2 |02 | bt | D100
code convert
D200 low | 30H |0 1 —-OH
D200 high | 41H | A 2 Not change to be | -0AH
D201low | 42H |B 3 0 OABH
D201 high [43H | C 4 OABCH
D202 low |31H |1 5 --OH ABC1H
D202 high [32H |2 6 -0AH | BC12H
D203 low [33H |3 7 OABH | C123H
D203 high | 34H | 4 8 0ABCH | 1234H
D204low |35H |5 9 --OH | ABC1H | 2345H
n=k4

D200[0[1]0J0JO0JOJO[T1[OJO[T1[1]0J0]0]0]

| 41H? [A] | 30H? [0] |
D201[of1JoJoJoJoJ1[1[ofJ1JoJ1JoJo[1]0]
| 43H7 [C] | 42H7 [B] |

D100[0]0]0]O0] 1[0 1]O0] 0 I[T]T[1]0]0]
| 0 | A | B | C |

141

4-8-13 Codi

1)Summary

ng [DECO]

Change any data or bit to 1.

Coding [DECO]

16 bits DECO 32 bits -
Execution Normally ON/OFF, Suitable XG1, XG2
condition rising/falling edge Models
Hardware - Software -
requirement requirement
2) Operands
Operands | Function Data Type
S The source data address 16 bits, BIN
D The decode result head address 16 bits, BIN
n The decoding soft element bit quantity 16 bits, BIN
3) Suitable soft components
Operands Word soft elements Bit soft elements
System Constant | Module System
D/ FD|TD|CD| DX | DY |DM| DS KH ID|QD| X M|S|T Dnm
S o | o ° ° ° ° ° °
D ° R
n °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM:; S includes S, HS; T

includes T, H

T; Cincludes C, HC.

Description
< When is bit unit > n<16
10) n
—“F—{ DpEco | bxo | mi0 | K3 |
X1 X

| 0|
// :
765/\/3
Lo [o |1 | o

X2
1]
4
4
[o

0
L

l\
2 1 o
ol o] o]

M17 M16

® n= 3, so the decoding object is the lower three bits in DXO0, which are X2 ~ X0.

M15 M4 M13 M12 M1l M10

® n =3, so the decoding results need to be expressed by 22 = 8 bits, which are M17 ~ M10.
® \When X2 =1, X1 =0, X0 =1, the value it represents is 4 + 1 = 5, so M15 in the fifth place

142

from M10 changes to 1; when X2 ~ X0 is all zero, the value is 0, so M10 is 1 (M10 is the Oth
place).

® If n = 0, the instruction will not be executed. If n is the value out of 0 ~ 16, the instruction
will not be executed.

® \When n = 16, if the decoding commanhdis/a bit soft component, the number of points is 2~ 16
= 65536.

® \When the driver input is OFF, the instruction is not executed, and the decoding output of the
action is maintained.

< When is word device > n<4
o (s) (o9 n
P ~——{ DEco | po | pi | K3 |

DO

hitl5 bito
[oJofoTo o o o oo oo oo 1]t a]

Ignore high 8-bit, all to 4 2 1
p Abe 0

15 14 13 12 11 10 9 8 7 65 4 3 2 1 O
[ofofofofofofoJofofsfofofofofo]o]
bitl5 D1 bit0

® The low n-bit (n < 4) of the source address is decoded to the target address. When n < 3, the
high 8-bit of the target turns to 0.

® [f n =0, the instruction will not be executed. If n is out of 0 ~ 4, the instruction will not be
executed.

® N = 3, so the decoding object in DO is bit2-bit0, and the maximum value it represents is 4 + 2
+1=7.

® N =3, s0in D1, 23 =8 bits are needed to represent the decoding result, that is, bit7 ~ bit0.

® \When bit2 and bitl are both 1 and bitO are 0, the value is 4+2=6, so bit6 in D1 is ON.

< is word soft component > n<4

o (s) (o) n
P}—{DECODOD1K4

DO

bit15 bit0
(0jofofojofojofofofofojof1jof1]1]
8 4 2 1

15 14 13 12 11m 0
0

6 5
(0jojojof1fofofofofofo]
bit15 D1 bit0

® The low n-bit (n <4) of the source address is decoded to the target address. When n < 3, the
high 8-bit of the target turns to 0.
® If n =0, the instruction will not be executed. If n is out of 0 ~ 4, the instruction will not be

143

executed.

® N =4, so the object of decoding in DO is bit3 ~ bit0, which represents the maximum value of

8+4+2+1=15.

® N =4, s0in D1, 2* =16 bits are needed to represent the decoding result, that is, bit15 ~ bit0.
® When bit3, bitl and bitO are all 1 and bit2 is 0, the numerical value is 8+2+1=11, so bitll in

D1is ON.

4-8-14 High bit coding [ENCO]

1) Summary
Find the highest bit which is 1.

High bit coding [ENCO]

16 bits ENCO 32 bits -
Execution Normally ON/OFF, Suitable XG1, XG2
condition rising/falling edge Models
Hardware - Software -
requirement requirement

2) Operands
Operands | Function Data Type
S Coding data address 16 bits, BIN
D Coding result address 16 bits, BIN
n The bit quantity of coding result 16 bits, BIN

3) Suitable soft components

Operan Word soft elements Bit soft elements
ds System Constant | Module System
DIF| T|C|D|D|D|D KH I| QD [X|Y|M|S|T|C| Dnm
DID|ID|X|Y|[M]|S D
S [J [J [J [} [} [J [} [} [N [J [JNN] [J
D ° e | o e | o |o
n °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM; S includes S, HS; T

includes T, HT; C includes C, HC.

Description

< When (s-) is bit device > n<16

) () on

H(H ENCO \ M10 \ D10 \ K3

144

M17 M16 M15 M14 M13 M12 M1l MI10

Lol o] o of s+] of 1] o]
7 6 5 4 3 2 1 0
\ Ignore the 1 of M11
D10 42271
ofofJoflofo]ofofofo]ofofofofof1]1]
hit15 bit0
Allto be 0

® [f the number of bits in the source address is 1, the low side is ignored, and if the source
address is 0, the instruction will not be executed.

® When the driving condition is OFF, the instruction is not executed and the coding output is
unchanged.

® When n = 16, if the encoding instruction is a bit element, its point number is 2 ~ 16 = 65536.

® N = 3, the encoded object has 2° = 8 bits, which are M17 ~ M10, and the encoding results are
stored in the lower three bits of D10, which are bit2 ~ bit0.

® M13 and M11 are both 1. Ignoring M11, M13 is coded, bit2-bitO represent 3, while bit0 and
bitl are 1.

<When (s-) is word device n<4

1 (s (o) n
P}—{ENCODODlKS

bit15 DO bit0
(ofsfofsofafof1]ofof1]ofof1]of0]
/7 6 5 43 2 1 0

High ¥ bit are
ignored Ignore the 1 of bit 2
D1 4 271
(0]ofojofofofofofofofofofoft]oft]
|bit15 | bit0
Allto be 0

® [f multiple bits in the source address is 1, the low side is ignored, and if the source address is
0, the instruction will not be executed.

® \When the driver input is OFF, the instruction is not executed and the coding output is
unchanged.

® When n < 3, the high 8 bits in D0 are neglected.

® When n=3, the encoding object has 23 = 8 bits, that is, bit7 ~ bit0 in DO. The encoding result
is stored in the lower 3 bits in D1, that is, bit2 ~ bitO.

® \When bit5 and bit2 in DO are both 1, bit2 is ignored, and bit5 is coded, bit2-bitO represent 5,
bit2 and bit0 are 1.

<((s-)is word soft component > n<4

145

bit15

g SNONE.
P}—{ENCODOD1K4

DO bit0

(oftfofrfofufofsjofofsfofofrfofo]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

D1

8 4 2 1
(0jofofofofofofofofofofofrfz]z]o]

[bit15

| bit0

Allto be 0

Ignore the 1 in hit2,
bit5, bit8, bitl0, bit12

® [f the number of bits in the source address is 1, the low side is ignored, and if the source
address is 0, the instruction will not be executed.
® \When the driver input is OFF, the instruction is not executed and the coding output is
unchanged.
® n =4, the encoded object has 24 =16 bits, that is, bit15 ~ bit0 in DO. The encoding result is

stored in

the lower 4 bits in D1, that is, bit3 ~ bitO.

® The highest bit of 1 in DO is bitl4, ignoring all low bits 1, and encoding bit14, bit3-bit0
represent 14, bit3, bit2 and bitl are 1.

4-8-15 Low
1) Summary

bit coding [ENCOL]

Find the position where the low bit is ON.

Low bit coding [ENCOL]
16 bits ENCOL 32 bits -
Execution Normally ON/OFF, Suitable XG1, XG2
condition rising/falling edge Models
Hardware - Software -
requirement requirement

2) Operands
Operands | Function Data Type
S Soft element address need coding 16bit,BIN
D Soft element address to save coding result 16bit,BIN
n The bit quantity of coding result 16bit,BIN

3) Suitable soft components

Operands Word soft elements Bit soft elements
System Constan | Module System
t
DF|T|C|D|D|D|D KH Dl Q |X|Y M|S|T|C| Dn
DIDID|X|Y|M]|S D m
S [] [] [] [] [] [] [] [] [] [] [] [] []
D o | o e | o | o
n °

146

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM:; S includes S, HS; T
includes T, HT; C includes C, HC.

Description

<if (s-) is bit device > n<16

. B :
P% ENCOL‘ M10 \ D10 \ K3 \

M17 M16 M15 M14 M13 M12 M1l MI10

Lo [1] oo of 1] of o]
7 6 5 4 3 2 1 0
\ lanore the 1 of M16
D10 472 1
ofofJoflofo]ofofofo]ofofofofof1]o]
hit15 bit0
Allto be 0

® |f the number of bits in the source address is 1, the high bit side is ignored, and if the source
address is 0, the instruction will not be executed.

® \When the driving condition is OFF, the instruction is not executed and the coding output is

unchanged. @

® Whenn =16, if the of encoding instruction is a bit element, its point is 2~ 16 = 65536.
® n =3, the encoded object has 22 = 8 bits, which are M17 ~ M10, and the encoding results are
stored in the lower three bits of D10, which are bit2 ~ bit0.

® M12 and M16 are both 1. Ignoring M16, M12 is coded, bit2-bitO represent 2, while bitl is 1.

<if @ is word device> n<4

y S :
P% ENCOL‘ DO \ D1 \ KB‘

bit15 DO bit0
[of1fofsfofsfofsfrfofofrjofofofo]
/7 6 5 4 3 2 1 0

H'Qh\é'b't 15 Ignore the 1 of b7
ignored
D1 4 2 1
(ofofofofofofofofofofofofofifofo]
|bit15 l bit0
All to be 0

147

If multiple bits in the source address is 1, the high bit side is ignored, and if the source
address is 0, the instruction will not be executed.

When the driver input is OFF, the instruction is not executed and the coding output is
unchanged.

When n <3, the high 8 bits in DO are neglected.

The encoding object has 22 = 8 bits, that is, bit7 ~ bit0 in D0. The encoding result is stored in
the lower 3 bits in D1, that is, bit2 ~ bit0.

When bit7 and bit4 in DO are both 1, bit7 is ignored and bit4 is coded. Bit 2 is 1 when bit2-
bit0 is expressed as 4.

< @ is word soft component > n<4

. S "
P% ENCOL | Do | DI | K4 |
bit15 DO bit0
(ofsfofsfofefofafofofsfofofofofo] .
1514 13 1211 10 9 8 7 6 5 4 3 2 1 0 Ignore the 1 in bit14,
bit12, bit10, bit8

D1 874 271
(ofofofofofofoJoJoJofofofofs]of1]
|bit15 | bit0

All to be 0

® |f multiple bits in the source address is 1, the high bit side is ignored, and if the source

address is 0, the instruction will not be executed.

® \When the driver input is OFF, the instruction is not executed and the coding output is
unchanged.

® n = 4, the encoded object has 24 =16 bits, that is, bit15 ~ bit0 in DO. The encoding result is
stored in the lower 4 bits in D1, that is, bit3 ~ bit0.

® The lowest bit of 1 in DO is bit5, ignoring all high bits 1, and encoding bit5 with bit3-bit0 as
5, bit2 and bit0 as 1.

4-8-16 Binary to Gray code [GRY]

1) Summary

Transform the binary data to gray code.

Binary to gray [GRY,DGRY]

16 bits GRY 32 bits DGRY
Execution Normally ON/OFF, Suitable XG1, XG2
condition rising/falling edge Models

Hardware - Software -
requirement requirement

148

2) Operands

Operands | Function Data Type
S Soft element address need coding 16bits/32bits,BIN
D Soft element address to save coding result 16bits/32bits,BIN

3) Suitable soft components

Operands Word soft elements Bit soft elements
System Constant | Module System
D|FD|TD | CD | DX | DY | DM | DS KH DD | X|Y|M|S|T|C|Dnm
S o | o ° ° ° ° ° ° °
D ° ° ° ° ° °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM:; S includes S, HS; T
includes T, HT; C includes C, HC.

Description

0 (s)
- GRY | D10 | D100 | Source (BIN) — target (GRY)

b15 D10 b0
[oJofoJofof1]ofo[1]of1]oJofo[1[1] Eachbitof D10 will XOR with the bit on

H its left side. As the related gray code, the
left bit will not change (the left bit is 0);

(ofofofofoft[1][of[1][1]1]1]0[0[1][0] thetransformation result is stored in

15 D100 D100

® Transform the binary value to gray code.
® GRY has32 bits mode DGRY, which can transform32 bits gray code.
[@ Range is 0~32,767 (16 bits instruction); 0~2,147,483,647 (32 bits instruction).

4-8-17 Gray code to binary [GBIN,DGBIN]

1) Summary
Transform the gray code to binary data.

Gray code to binary [GBIN,DGBIN]
16 bits GBIN 32 bits DGBIN
Execution Normally ON/OFF, Suitable XG1, XG2
condition rising/falling edge Models
Hardware - Software -
reguirement reguirement

2) Operands

149

Operands | Function Data Type
S Soft element address need coding 16bits/32bits, BIN
D Soft element address to save coding result 16bits/32bits, BIN
3) Suitable soft components
Operands Word soft elements Bit soft elements
System Constant | Module System
DI/F| T, C|D|D| D|D KH DD | XY M|S|T Dn.
DI D|D|X|Y|M|S m
S ° ° ° ° ° ° ° °
D o | o ° o | o

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM; S includes S, HS; T

includes T, HT; C includes C, HC.

Description

CONNCY

H‘L{ GBIN |

D10 \ D100 \

b15

D10

b0

[ofofofojofrfrfof1[t1]r1]r]ofof1]0]

!

[ofofofofo[r]ofof1]ofr1]ofofof1][1]

b15

D100

® Transform the gray code to binary value.
® GBIN has32 bits mode DBIN, which can transform32 bits binary value.

® (s-) Range is 0~32,767 (16 bits instruction); 0~2,147,483,647 (32 bits instruction).

b0

From the left second bit of D10, XOR
each bit with the value after decoding,
as the bit value after decoding (the left

Source (GRY) — target (BIN)

bit will not change). The

transformation value will be stored in

D100.

4-9. Floating number Operation
Mnemonic | Function Chapter
ECMP Floating Compare 4-9-1
EZCP Floating Zone Compare 4-9-2
EADD Floating Add 4-9-3
ESUB Floating Subtract 4-9-4
EMUL Floating Multiplication 4-9-5

150

EDIV Floating Division 4-9-6
ESQR Floating Square Root 4-9-7
SIN Sine 4-9-8
COS Cosine 4-9-9
TAN Tangent 4-9-10
ASIN ASIN 4-9-11
ACOS ACOS 4-9-12
ATAN ATAN 4-9-13
4-9-1 Floating Compare [ECMP,EDCMP]
1) Summary

Floating Compare [ECMP,EDCMP]

16 bits - 32 bits ECMP

Execution Normally ON/OFF, Suitable XG1, XG2

condition rising/falling edge Models

Hardware - Software -

requirement requirement

64 bits EDCMP

Execution Normal ON/OFF/falling or | Suitable XG2

condition rising pulse edge Models

Hardware Version V3.7.1 or later Software Version V3.7.4a or later

requirement requirement

2) Operands

Operands | Function Data Type
Sl Soft element address need compare 32/64 bits, BIN
S2 Soft element address need compare 32/64 bits, BIN
D Compare result bit
3) Suitable soft components
Operands Word soft elements Bit soft elements
System Constant | Module System
DF T|C|D|D| D|D KMH D| QX Y| M|S|T|C|Dnm
DD DI X|Y|M]|S D
S1 ol o e | o | o |0 °
S2 ol o e | o | o |0 °
D oo | o

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM; S includes S, HS; T

includes T, HT;

Cincludes C, HC.

Description

<32 bits operation>

151

X0 @ @ (D11,D10):(D21,D20) —» M0,M1,M2
— Hﬁ ECMP ‘ D10 ‘ D20 ‘ Mo Binary FloatingBinary Floating
MO
b (D11,D10) > (D21<D20)
Binary Floating Binary Floating
| ML (D11,D10) = (D21<D20)
Binary Floating Binary Floating
| M2 (D11,D10) < (D21<D20)
T Binary Floating Binary Floating

When X0 is OFF, even ECMP doesn’t run, MO~M2 will keep the
status before X0 is OFF.

® The instruction will compare the two source data S1 and S2. The result is stored in three bits
from D.

® Before the instruction is executed, the comparison data must be all floating numbers (if it is
an integer, it can be converted by FLT instructions); otherwise, the execution result will be
wrong.

® |[faconstant K or H used as source data, the value is converted to floating value.

(K500) (D101, D100) -»M10,M11,M12

X0 : . .
— ‘ KE00 ‘ . ‘ M10 ‘ Binary 'converts Binary floating
to floating

<64 bits operation>
(K500) : (D103,0102,0101,D100)— M10,M11,M12

X0 . . .
H{ EDCMP ‘ K500 ‘ D100 ‘ M10 ‘ Binary converts Binary floating
to floating

4-9-2 Floating Zone Compare [EZCP]

1) Summary
Floating Zone Compare [EZCP]
16 bits - 32 bits EZCP
Execution Normally ON/OFF, Suitable XG1, XG2
condition rising/falling edge Models
Hardware - Software -
requirement requirement

152

2) Operands

Operands | Function Data Type
S1 Soft element address need compare 32 bits, BIN
S2 Upper limit of compare data 32 bits, BIN
S3 Lower limit of compare data 32 bits, BIN
D The compare result soft element address bit

3) Suitable soft components

Operands Word soft elements Bit soft elements
System Constant | System Constant
DF|T/ C| D|D|D|D| KH 1] Q| X|Y|M|S|T|C|Dnm
D|IDD|X|Y]|M|S D| D

S1 o o e | o | o |0 °

S2 o o e | o | o |0 °

S3 o o o | o o | o °

D o o |0

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM; S includes S, HS; T
includes T, HT; C includes C, HC.

Description

Compare the source data with the range

o & & ()

—)ﬁ)——{ EzcP | D10 | D20 | DO | M3 |
M3
i (D1, DO) < (D11, D10) ON
\ia Binary Floating Binary Floating
i (D11,D10) < (D1,D0) <(D21,D20) ON
M5 Binary Floating Binary Floating Binary Floating
i (D1,D0) > (D21, D20) ON
T Binary Floating Binary Floating
When X0 is OFF, even EZCP doesn’t run, M3~M5 will keep
® the status before X0 is OFF. range S1~S2.

® I ne result will store In three colls starting rTrom D.

® Constant K and H will transform to binary floating value when they are source data.

F«L{ EZCP | K10 | K2800 | D5 | Mo |

(K10): [D6,D5] : (K2800) — MO, M1, M2
Binary converts Binary Floating Binary converts
to Floating to Floating

Please set S1<S2, when S2< S1, make S2 as the same value to S1.

Note: the compare value must be floating numbers, otherwise the result will be error.

4-9-3 Floating Addition [EADD, EDADD]

1) Summary
Floating Add [EADD, EDADD]
16 bits - 32 bits EADD
Execution Normally ON/OFF, Suitable XG1, XG2
condition rising/falling edge Models
Hardware - Software -
requirement requirement
64 bits EDADD
Execution Normal ON/OFF/falling or | Suitable XG2
condition rising pulse edge Models
Hardware Version V3.7.1 or later Software Version V3.7.4a or later
requirement requirement

2) Operands

Operands | Function Data Type

S1 Addition operation data address 32/64 bits, BIN
S2 Addition operation data address 32/64 bits, BIN
D Result address 32/64 bits, BIN

3) Suitable soft components

Operands Word soft elements Bit soft elements
System Constant | Module System
DIF| T|C|D|D| D |D| KH 1 | Q| X|Y|MS|T C| Dhm
DI DD X|Y|M]|S D| D
S1 ol o o | o o | o °
S2 ol e o | o o | o °
D ° ° o | o

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM; S includes S, HS; T
includes T, HT; C includes C, HC.

Description

<32 bits operation>

e & &)

D10 \ D20 \ D50 \

H(H EADD \

<64 bits operation>

(D11, D10) +

154

(D21,D20) — (D51,D50)

(D13, D12,D11, D10)+ (D23, D22,D21, D20)— (D53, D52,D51, D50)

0
- EDADD | D10 | D2 | Dso |
Binary Floating Binary Floating Binary Floating

H EORNED

® The two binary floating source data do addition operation, the result will be stored in target
address.

® |f a constant K or H used as source data, the value is converted to floating point before the
addition operation.

® The registers in EDADD must start with an even address.

<32 bits operation>

PL{ EADD \ D100 ‘K1234‘ D110 \

(K1234) + (D101,D100) — (D111,D110)
Binary converts to Floating Binary Floating Binary Floating

<64 bits operation>

HL{ EDADD ‘ D100 ‘ K1234 ‘ D110 ‘

(K1234) + (D103, D102, D101, D100) —~(D113, D112, D111, D110)
Binary converts Binary Floating Binary Floating
to Floating

® The source data and result address can be the same. Please note that when X0 is ON, the
instruction will be executed in every scanning period.

Note: the add value must be floating numbers, otherwise the result will be error.

4-9-4 Floating Subtraction[ESUB,EDSUB]

1)Summary
Floating Sub [ESUB,EDSUB]
16 bits - 32 bits ESUB
Execution Normally ON/OFF, Suitable XG1, XG2
condition rising/falling edge Models
Hardware - Software -
requirement requirement
64 bits EDSUB

155

Execution Normal ON/OFF/falling or | Suitable XG2
condition rising pulse edge Models
Hardware Version V3.7.1 or later Software Version V3.7.4a or later
requirement requirement
2) Operands
Operands | Function Data Type
S1 Subtraction operation data address 32/64 bits, BIN
S2 Subtraction operation data address 32/64 bits, BIN
D Result address 32/64 bits, BIN

3) Suitable soft components

Operands Word soft elements Bit soft elements
System Constant | Module System
DIF| T|C|D|D|D|D| KH 11 Q[X|Y|M|S|T|C| Dnm
DID|ID|X|Y]|M]|S D| D
S1 oo e | o o | o °
S2 oo o | o o | o °
D ° ° o | o

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM; S includes S, HS; T
includes T, HT; C includes C, HC.

Description

<32 bits operation>

F(O - CONNCED

\ D10 \ D20 \ D50 \

(D11,D10) — (D21,D20) — (D51,D50)
Binary Floating Binary Floating Binary Floating

<64 bits operation>

PM __® @

D10 \ D20 \ D50 \

(D13, D12,D11, D10)—(D23,D22,D21,D20) — (D53, D52,D51, D50)
Binary Floating Binary Floating Binary Floating

® The binary floating value S1 subtract S2, the result is stored in the target address.
® If a constant K or H used as source data, the value is converted to floating point before the
subtraction operation.

156

<32 bits operation>

K1234 \ D100 \ D110 \

HL{ ESUB \

(K1234)—

Binary converts to Floating Binary Floating

<64 bits operation>

CORNCD

HM EDSUB | D10 | D20 | Dso |

(D101, D100) — (D111, D110)

Binary Floating

(D13, D12,D11, D10)—(D23,D22,D21,D20) — (D53, D52,D51, D50)

Binary converts to Floating Binary Floating

® The source data and result address can be the same. Please note that when X0 is ON, the

Binary

instruction will be executed in every scanning period.
® Note: the operand value must be floating numbers, otherwise the result will be error.

4-9-5 Floating Multiplication [EMUL, EDMUL]

1)Summary
Floating Multiply [EMUL, EDMUL]
16 bits - 32 bits EMUL
Execution Normally ON/OFF, Suitable XG1, XG2
condition rising/falling edge Models
Hardware - Software -
requirement requirement
64 bits EDMUL
Execution Normal ON/OFF/falling | Suitable XG2
condition or rising pulse edge Models
Hardware Version V3.7.1 or later Software Version V3.7.4a or later
requirement requirement

2) Operands

Operands | Function Data Type

S1 Multiplication operation data address 32 /64bits, BIN
S2 Multiplication operation data address 32 /64bits, BIN
D Result address 32 /64bits, BIN

3) Suitable soft components

Operands

Word soft elements

Bit soft elements

System

Constant | Module

System

DIF|T|[c|D|D|[D]|D

KH

1] Q[X|Y[M[sS|T]d Dum

157

D D/ID|X|Y|M|S D| D
S1 ol o o | o o | o °
S2 ol o o | o o | o °
D ° ° o | o

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM; S includes S, HS; T
includes T, HT; C includes C, HC.

Description

<32 bits operation>

PG & @

D10 \ D20 \ D50 \

(D11, D10) x (D21,D20) — (D51,D50)
Binary Floating Binary Floating Binary Floating

<64 bits operation>

. @ @
PH EDMUL

D10 \ D20 \ D50 \

(D13, D12,D11, D10) X (D23, D22,D21, D20)— (D53, D52,D51, D50)
Binary Floating Binary Floating Binary Floating

® The floating value of S1 is multiplied with the floating value point value of S2. The result of
the multiplication is stored at D as a floating value.

® |f aconstant K or H used as source data, the value is converted to floating point before the
multiplication operation.

® The registers in EDMUL must start with an even address.

<32 bits operation>

F(L{ EMUL \ K100 \ D100 \ D110 \

(K100)x (D101,D100)— (D111,D110)
Binary converts to Floating Binary Floating Binary Floating

158

<64 bits operation>

H#{ EDMUL | K100 | D100 | D110 |

(K00) X (D103, D102,D101, D100)— (D113, D112,D111, D110)
Binary Floating Binary Floating

Binary converts

to Floating

Note: the operand value must be floating numbers, otherwise the result will be error.

4-9-6 Floating Division [EDIV, EDDIV]

1) Summary
Floating Divide [EDIV, EDDIV]
16 bits - 32 bits EDIV
Execution Normally ON/OFF, Suitable XG1, XG2
condition rising/falling edge Models
Hardware - Software -
requirement requirement
64 bits EDDIV
Execution Normal ON/OFF/falling or | Suitable XG2
condition rising pulse edge Models
Hardware Version V3.7.1 or later Software Version V3.7.4a or later
requirement requirement

2) Operands
Operands | Function Data Type
S1 Division operation data address 32/64 bits, BIN
S2 Division operation data address 32/64 bits, BIN
D Result address 32/64 bits, BIN

3) Suitable soft components

Operands Word soft elements Bit soft elements
System Constant | Module System
DIF| T|C|D|D| D|D KMH 1| Q[X|Y|M|S|T|C| Dn
DD/ D| X|Y|M]|S D| D m
S1 o o o | o | o |0 °
S2 o o o | o | o |0 °
D ° ° o | o

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM:; S includes S, HS; T
includes T, HT; C includes C, HC.

159

Description

<32 bits operation>

3 ol
PH{ EDIV

\ D10 \ D20 \ D50 \

(D11,D10) = (D21,D20) — (D51,D50)
Binary Floating Binary Floating Binary Floating

<64 bits operation>

HOH __® ®

D10 \ D20 \ D50

(D13, D12,D11, D10)+ (D23, D22,D21, D20)— (D53, D52,D51, D50)
Binary Floating Binary Floating Binary Floating

The floating point value of S1 is divided by the floating point value of S2. The result of the

division is stored in D as a floating point value.

® |f a constant K or H used as source data, the value is converted to floating point before the
division operation.

® The source data S2 is 0, the calculation will be error. The instruction will not work.

® The operand value must be floating numbers, otherwise the result will be error.

® The first address of the register in the EDDIV instruction must be an even number.

<32 bits operation>

HL{ EDIV \ D100 \ K100 \ D110 \

(D101, D100)+ (K100) — (D111, D110)
Binary converts Binary Floating Binary Floating
to Floating

<64 bits operation>

HL{ EDDIV | D100 | K100 | D110 |

(D103, D102,D101, D100) -+ (K100)— (D113, D112,D111, D110)
Binary converts Binary Floating Binary Floating
to Floating

160

4-9-7 Float Square Root [ESQR]

1) Summary
Floating Square Root [ESQR]
16 bits - 32 bits ESQR
Execution Normally ON/OFF, Suitable XG1, XG2
condition rising/falling edge Models
Hardware - Software -
reguirement reguirement

2) Operands
Operands | Function Data Type
S The soft element address need to do square root | 32 bits, BIN
D The result address 32 bits, BIN

3)Suitable soft components

Operands Word soft elements Bit soft elements
System Consta | Module System
nt
DIFf T|C|D|D|D|D| KH |[I]|]Q|X|Y|M|S|TC| Dnm
DDD|D|X|Y|M]|S D| D
S L) ° ° ° ° °
D ° ° ° °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM; S includes S, HS; T
includes T, HT; C includes C, HC.

Description

(s
H(H £SOR ‘ (D11,D10) — (D21,D20)

D10 \ D20 \

Binary FloatingBinary Floating

® Asquare root is performed on the floating point value S; the result is stored in D.
® |f a constant K or H used as source data, the value is converted to floating point before the
operation.

H ESOR ‘K1024‘ D110 ‘ (K1024) — (D111, D110)
Binary converts to FloatingBinary Floating

When the result is zero, zero flag activates.

® Only when the source data is positive will the operation be effective. If S is negative then an
error occurs and error flag SM409 is set ON, SD409=7, the instruction can’t be executed.

® The operand value must be floating numbers, otherwise the result will be error.

161

4-9-8 Sine[SIN]

1) Summary
Floating Sine[SIN]
16 bits - 32 bits SIN
Execution Normally ON/OFF, Suitable XG1, XG2
condition rising/falling edge Models
Hardware - Software -
requirement requirement
2) Operands
Operands | Function Data Type
S The soft element address need to do sine 32 bits, BIN
D The result address 32 bits, BIN
3) Suitable soft components
Operands Word soft elements Bit soft elements
System Consta | Module System
nt
DIF| T|C|D|D|D|D| KH |1]|]Q|X|Y| M|S|T|C Dun
DID|D|X|Y|M]|S D| D
S) ° ° ° ° °
D) ° o | o

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM; S includes S, HS; T
includes T, HT; C includes C, HC.

Description
” ©
— SIN \ D50 \ D60 \

(D51,D50) — (D61,D60)SIN
Binary Floating Binary Floating

® This instruction performs the mathematical SIN operation on the floating point value in S
(angle RAD). The result is stored in D.

@ D51 | D50] RAD value (angle>t/180)
Assign the binary floating value

Binary Floating

Note: the operand value must be floating numbers, otherwise the result will be error.

162

4-9-9 Cosine[COS]

1) Summary
Floating Cosine[COS]
16 bits - 32 bits COS
Execution Normally ON/OFF, Suitable XG1, XG2
condition rising/falling edge Models
Hardware - Software -
requirement requirement
2) Operands
Operands | Function Data Type
S Soft element address need to do cos 32 bits, BIN
D Result address 32 bits, BIN
3) Suitable soft components
Operands Word soft elements Bit soft elements
System Constant | Module System
DIF| T|C|D|D|D|D| KH | Q| X|Y|{M|S|T|C| Dn
DID|D|X|Y|M|S D| D m
S oo o | o o | o °
D) ° o | o

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM; S includes S, HS; T
includes T, HT; C includes C, HC.

Description
- ©
— cos \ D50 \ D60 \

(D51,D50)RAD — (D61,D60)COS
Binary Floating Binary Floating

® This instruction performs the mathematical COS operation on the floating point value in S
(angle RAD). The result is stored in D.

RAD value (angle>t/180)
@ D5 [D50] . _ .

Assign the binary floating value
COS value
Binary Floating

|D61|D60|

Note: Before the instruction is executed, the data in parameter S must be floating number;
otherwise, the execution result will be wrong.

163

4-9-10 TAN [TAN]

1) Summary
TAN [TAN]
16 bits - 32 bits TAN
Execution Normally ON/OFF, Suitable XG1, XG2
condition rising/falling edge Models
Hardware - Software -
requirement requirement

2) Operands
Operands | Function Data Type
S Soft element address need to do tan 32bit,BIN
D Result address 32bit,BIN

3) Suitable soft components

Operands Word soft elements Bit soft elements
System Constant | Module System
DIF| T|C|D|D| D|D|l KH | Q| X|Y|M|S|T|C| Dnm
DID|D|X|Y|M|S D| D
S oo ° ° o | o °
D ° ° o | o

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM; S includes S, HS; T
includes T, HT; C includes C, HC.

Description

X0 ()
PH{ TAN | D50 |

D60 \

(D51,D50) RAD —
Binary Floating

(D61,D60) TAN

Binary Floating

® This instruction performs the mathematical TAN operation on the floating point value in S.
The result is stored in D.

@|D51|D50|

(p-) [CBeL_T oeo]

RAD value (angle>t/180)
Assign the binary floating value

TAN value

Binary Floating

Note: Before the instruction is executed, the data in parameter S must be floating number;
otherwise, the execution result will be wrong.

164

4-9-11 ASIN [ASIN]

1) Summary
ASIN [ASIN]
16 bits - 32 hits ASIN
Execution Normally ON/OFF, Suitable XG1, XG2
condition rising/falling edge Models
Hardware Software -
requirement requirement
2) Operands
Operands | Function Data Type
S Soft element address need to do arcsin 32 bits, BIN
D Result address 32 bits, BIN
3) Suitable soft components
Operands Word soft elements Bit soft elements
System Constant | Module System
DIF| T|C|D|D| D |D KH 1| Q| X|Y|M|S|T|C| Dn
DIDID|X|Y|M|S D| D m
S ol e ° ° o | o °
D ° ° o | o

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM; S includes S, HS; T
includes T, HT; C includes C, HC.

Description

D50 ‘ D60 ‘ Binary Floating Binary Floating

HO (s) (D51,D50)ASIN — (D61,D60)RAD
— ASIN |

This instruction performs the mathematical ASIN operation on the floating point value in S.
The result is stored in D.

@| D51 | D50 | ASIN value
Binary Floating

RAD value (angle>t/180)

I 56T T 560] Assign the binary floating

value

Note: Before the instruction is executed, the data in parameter S must be floating number;
otherwise, the execution result will be wrong.

165

4-9-12 ACOS [ACOS]

1) Summary
ACOS [ACOS]
16 bits - 32 bits ACOS
Execution Normally ON/OFF, Suitable XG1, XG2
condition rising/falling edge Models
Hardware Software -
requirement requirement

2) Operands
Operands | Function Data Type
S Soft element address need to do arccos 32 bits, BIN
D Result address 32 bits, BIN

3)Suitable soft components

Operands Word soft elements Bit soft elements
System Constan | Module System
t
DIF| T|C|D|D|D|D|] KH 1| Q[X|Y|M|S|T|C| Dm
DID|ID|X|Y]|M|S D| D
S o o ° ° o | o °
D ° ° o | o

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM; S includes S, HS; T
includes T, HT; C includes C, HC.

Description

” o
P}—{ ACOS \ D50 \ D60

(D51,D50)ACOS — (D61,D60)RAD
Binary Floating Binary Floating

Calculate the arcos value(radian), save the result in the target address

@|D51|D50|

|D61|D60|

ACOS value

Binary Floating

RAD value (angle>t/180)
Assign the binary floating value

Note: Before the instruction is executed, the data in parameter S must be floating number;
otherwise, the execution result will be wrong.

166

4-9-13 ATAN [ATAN]

1) Summary
ATAN [ATAN]
16 bits - 32 hits ATAN
Execution Normally ON/OFF, Suitable XG1, XG2
condition rising/falling edge Models
Hardware Software -
requirement requirement
2) Operands
Operands | Function Data Type
S Soft element address need to do arctan 32 bits, BIN
D Result address 32 bits, BIN
3) Suitable soft components
Operands Word soft elements Bit soft elements
System Constant | Module System
DIFIT|C|D|D|D|D| KH [I|QQD|XY|M|S|T|C| Dn
DIDID|X|Y|M]|S D m
S o | o e | o ° ° °
D ° ° ° °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM; S includes S, HS; T
includes T, HT; C includes C, HC.

Description

NG

HXOH{ ATAN \ D50 \ D60 \

(D51,D50)ATAN — (D61,D60)RAD
Binary Floating Binary Floating

Calculate the arctan value (radian), save the result in the target address

@ D5t | D50] ATAN value
Binary Floating

RAD value (angle>t/180)

D6l T oo] Assign the binary floating

value

Note: Before the instruction is executed, the data in parameter S must be floating number;
otherwise, the execution result will be wrong.

167

4-10 RTC Instructions

Mnemonic Function Chapter

TRD Clock data read 4-10-1

TWR Clock data write 4-10-2

TADD Clock data add 4-10-3

TSUB Clock data sub 4-10-4

HTOS Convert hour, minute, and second data 4-10-5
to seconds

STOH Convert second data to hours, minutes, 4-10-6
and seconds

TCMP Time (hours, minutes, seconds) compare | 4-10-7

DACMP Date (year, month, day) compare 4-10-8

Note:

2 1: To use the instructions, the model should be equipped with RTC function
2 2: There is a certain error in the clock of XG series PLC, which is about 5 minutes per
month. It can be calibrated regularly through the touch screen or in the PLC program.

4-10-1 Read the clock data [TRD]

1) Summary

Read the clock data:

Read the clock data: [TRD]

16 bits TRD 32 bits -
Execution Normally ON/OFF, Suitable XG1, XG2
condition rising/falling edge Models
Hardware - Software -
requirement requirement

2) Operands
Operands | Function Data Type
D Register address to save clock data 16 bits, BIN

3) Suitable Soft Components

Operands Word soft elements Bit soft elements
System Constant | Module System
DIF|I T, C | D|D| D |D KH 1 Q| XY M|S|T|C| Dam
DID|D|X|Y|M]|S D| D
D ° o | o

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM:; S includes S, HS; T
includes T, HT; C includes C, HC.

168

Description

X0

— TRD

| oo |

The current time and date of the real time clock are read and stored in the 7 data devices

specified by the head address D.

® Read PLC’s real time clock according to the following format.
Read the special data register (SD013~SD019).

Unit Item Clock data Unit Item
? SD018 | Year 0-99 — > DO Year

@

% SD017 | Month 1-12 —> D1 Month
§ g SD016 | Date 1-31 — | D2 Date
2 & | SD015 | Hour 0-23 —> D3 Hour
% % SD014 | Minute 0-59 — > D4 Minute

§ SD013 | Second 0-59 — | D5 | Second

g SD019 | Week | 0 (Sun.)-6 (Sat.) s D6 Week

4-10-2 Write Clock Data [TWR]

1) Summary

Write the clock data:

The RTC (real time clock) value is in BCD code format (SD013 to SD019).

After reading the RTC by TRD instruction, the value will show in decimal format.
After reading the RTC by TRD, the value becomes decimal value.

after executing TRD instruction, DO to D6 are occupied.

Write clock data [TWR]

16 bits - 32 bits TWR
Execution Normally ON/OFF, Suitable XG1, XG2
condition rising/falling edge Models
Hardware Software -
requirement requirement

2) Operands
Operands | Function Data Type
S Write the clock data to the register 16 bits, BIN

3) Suitable Soft Components

Operands

Word soft elements

Bit soft elements

System | Constan | Module

System

169

t
DIF| T|C | D|D| D |D| KH 1| Q[X|Y|M|S|T|C| Dn
DD/ D| X|Y|M]|S D| D m
D ° o | o | o | 0| @ |0

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM; S includes S, HS; T
includes T, HT; C includes C, HC.

Description

X0 &)
P TWR \ DO \

Write the RTC value to the PLC.
® Write the set clock data into PLC’s real time clock.
® In order to write real time clock, please set the 7 registers value from DO to D6.

Unit Item Clock data Unit Item

DO Year 0-99 — | SD018 Year %
S D1 | Month 1-12 — | SD017 | Month | &
%-’" D2 Date 1-31 — | SD016 | Date %’ %
g D3 Hour 0-23 — | SD015 | Hour %é
2 D4 | Minute 0-59 —» | sDo14 | Minute |2 &
§' D5 | Second 0-59 — | sD013 | Second :-‘3“

D6 Week | 0(Sun.)-6 (Sat) | —» | SD019 | Week g

After executing TWR instruction, the time in real time clock will immediately change to be
the new time. It is a good idea to set the time few minutes late as the current time, and then
drive the instruction when the real time reaches this value.

Note: when choosing secret download program advance mode in XDPpro software, the RTC
only can be changed through TWR instruction.

There is another method to write the RTC.

In the XDPpro software, please click the clock details in project bar on the left.

5.3 PLC Status

..... [& CPU Detail

..... [# PLC Project Message
----- % Expansion Details

..... = BD Details

..... g ED Details

..... -Eﬁ Scan Cycle

..... b= Clock Details

..... *= Error Details

/ _ -

170

Then click write into the current time.the PC will auto-write the current time to the PLC.

o5 PLC Details x
_;J PLC Status al 2 Ter momeIy
(8 CPU Detail £ b 7 *
E FIC Project Messag ZOZE—4—9 14:39:40 Saturdayr
{8 Expanzion Details
i ED Tletails
'f.‘ Scan Cyecle
?_.@ Clack :];Iretails T S i
% Error Details last run time:
lazt stop moment:
the cwrrent run time:
current step time:
K|
Then click write into the current time.the PC will auto-write the current time to the PLC.
4-10-3 Clock data add [TADD]
1) Summary
Clock data add [TADD]
16 bits TADD 32 bits -
Execution Normally ON/OFF, Suitable XG1, XG2
condition rising/falling edge Models
Hardware Version V3.5.3a (or V3.3y) | Software Version VV3.5.3 or later
requirement | or later reguirement
2) Operands
Operands | Function Data Type
S1 Soft element header address of the clock data 16 bits, BIN
(hour, minute, second)
S2 Soft element header address of the clock data 16 bits, BIN
(hour, minute, second)
D The result address 16 bits, BIN
3) Suitable soft components
Operan Word soft elements Bit soft elements
ds System Consta | Module System
nt
DIF|T|C| D D|D| KH | 1| Q|X|Y|M|S|T|C| Dn
D|D|D]| X M| S D| D m
S1 °
S2 °
D °

171

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM; Sincludes S, HS; T
includes T, HT; C includes C, HC.

Description
MO
}—1 TADD | HDO | HDlO‘ HD20 ‘
HDO (Hour) HD10 (Hour) HD20 (Hour)
HD1 (Minute) | 4 |HD11 (Minute)~| HD21 (Minute)
HD2 (Second) HD12 (Second) HD22 (Second)

Note: the correspondence of registers is fixed, that is, they are stored in order of hours,
minutes and seconds.

If the operation result is 0 hour, 0 minute, 0 second, SM20 will be set ON.

The operands S1, S2, and D each occupy three registers. Do not use them for other purposes.
Time range: 0~23, the range of minutes: 0~59, the range of seconds: 0~59.

If the seconds and minutes after the addition operation exceed 59, the operation result is saved
in the seconds and minutes register after subtracting 60, and the values of minutes and hours
are automatically increased by 1.

If the hours after the addition operation exceed 23, the operation result is subtracted by 24 and
stored in the time register, and the carry flag bit SM22 is set to on.

Example 1:

<General condition>

MO
%{ TADD ‘ HDO ‘ HDlO‘ HDZO‘

hour HDO: 3 HD10: 7 HD20: 10
minute |HD1: 10|+ |HD11: 30| —|HD21: 40
second |HD2: 8 HD12: 15 HD22: 23

Example 2:
< More than 59 seconds >

MO
——— TADD HDO HD10 | HD20
hour | HDO: 3 HD10: 7 | [HD20: 10
minute | HD1: 10 |+|HD11: 30|—~|HD21: 41
second | HD2: 40 HD12: 30 HD22: 10
Example 3:

< More than 59 minutes >

172

MO
}—{ TADD ‘ HDO ‘ HDlO‘ HDZO‘

hour HDO: 3 HD10: 7 HD20: 11
minute HD1: 35|+ |HD11: 30|—|HD21: 6
second HD2: 40 HD12: 30 HD22: 10

Example 4:
< More than 23 hours >

MO
%{ TADD ‘ HDO ‘ HDlo‘ HDZO‘

hour HDO: 17 HD10: 7 HD20: 1
minute |HD1: 35 |+|HD11: 30|—|HD21: 6
second HD2: 40 HD12: 30 HD22: 10

4-10-4 Clock data sub [TSUB]

1) Summary
Clock data sub [TSUB]
16 bits TSUB 32 bits -
Execution Normally ON/OFF, Suitable XG1, XG2
condition rising/falling edge Models
Hardware Version V3.5.3 (or V3.3y) | Software Version VV3.5.3 or later
requirement | or later requirement

2) Operands

Operands | Function Data Type

S1 Soft element header address of the clock data 16 bits, BIN
(hour, minute, second)

S2 Soft element header address of the clock data 16 bits, BIN
(hour, minute, second)

D The result address 16 bits, BIN

3) Suitable soft components

Operands Word soft elements Bit soft elements
System Consta | Module System
nt
DDF| T|C|D|D|D|D| KH |[I]|Q|X|Y|M|S|T|C| Dn
DID|D|X|Y|M|S D| D m
S1 °
S2 °
D °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM:; S includes S, HS; T
includes T, HT; C includes C, HC.

173

Description

MO
%{ TSUB ‘ HDO ‘ HDlo‘ HDZO‘

HDO (Hour)

HD10 (Hour)

HD20 (Hour)

HD1 (Minute)

- |HD11 Minute)>| HD21 (Minute)

HD2 (Second)

HD12 (Second),

HD22 (Second)

Note: the correspondence of registers is fixed, that is, they are stored in order of hours,
minutes and seconds.
If the operation result is 0 hour, 0 minute, 0 second, SM20 will be set ON.

The operands S1, S2, and D each occupy three registers. Do not use them for other purposes.
Time range: 0~23, the range of minutes: 0~59, the range of seconds: 0~59.

If the second and minute after subtraction is less than 0, add 60 to the operation result and
save it in the second and minute registers. At the same time, the value of minute and hour will

be automatically reduced by 1.

If the hour after subtraction is less than 0, add 24 to the operation result and save it in the time
register, and set the borrow flag SM21 to on.

Example 1:

<General condition>

MO
%{ TSUB ‘ HDO ‘ HDlO‘ HDZO‘

hour
minute
second

Example 2:

HDO: 7 HD10: 3 HD20: 4
HD1: 30 HD11: 10| —~|HD21: 20
HD2: 15 HD12: 8 HD22: 7

{Less than 0 seconds)

MO
%{ TSUB ‘

HDO ‘ HDlo‘ HD20 ‘

hour
minute
second

Example 3:

HDO: 7 HD10: 3 HD20: 4
HD1: 30 HD11: 10| —~|HD21: 19
HD2: 30 HD12: 40/ |HD22: 50

{Less than 0 minutes)

}—(M}O—{ TSUB |

HDO | HDlO‘ HD20 ‘

hour
minute
second

HDO: 7 HD10: 3 HD20: 3
HD1: 30 HD11: 35 —|HD21: 55
HD2: 40 HD12: 30] [HD22: 10

174

Example 4:

{Less than 0 hours)

MO
%{ TSUB ‘ HDO ‘ HDlO‘ HDZO‘

hour
minute
second

HDO: 7 HD10: 10| |HD20: 21
HD1: 35| —|HD11: 30, —|HD21: 5
HD2: 40 HD12: 30/ [HD22: 10

4-10-5 Convert hour, minute, and second data to seconds [HTOS]

1) Summary
Convert hour, minute, and second data to seconds [HTOS]
16 bits HTOS 32 bits -
Execution Normally ON/OFF, Suitable XG1, XG2
condition rising/falling edge Models
Hardware Version V3.5.3a (or V3.3y) | Software Version VV3.5.3 or later

requirement

or later

requirement

2) Operands

Operands | Function Data Type
S Clock data before conversion 16 bits, BIN
D Clock data after conversion 16 bits, BIN

3) Suitable soft components

Operands Word soft elements Bit soft elements
System Constant | Module System
DIF| T|C|D|D|D|D| KH |I1|Q|XY|M|S T|HC Dnm
DIDID|IX|Y|M|S D| D
S °
D °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM; S includes S, HS; T
includes T, HT; C includes C, HC.

Description

&)

)

HH HTOS |

HDO \

HD10 \

(HD, HD1, HD2)—~ (HD10,HD11)

Hour, minute ,second — second

® \When the MO switches on, it converts clock data (hours, minutes and seconds) in three
consecutive registers led by HDO into second data, which is stored in register HD10 (double

word).

® Note: the correspondence of registers is fixed, that is, they are stored in order of hours,

175

minutes and seconds.
® The operands S occupy three registers. Do not use them for other purposes.

4-10-6 Convert second data to hours, minutes, and seconds [STOH]

1) Summary
Convert hour, minute, and second data to seconds [STOH]
16 bits - 32 bits STOH
Execution Normally ON/OFF, Suitable XG1, XG2
condition rising/falling edge Models
Hardware Version V3.5.3 (or V3.3y) | Software Version VV3.5.3 or later
requirement | or later requirement

2) Operands
Operands | Function Data Type
S Clock data before conversion 16 bits, BIN
D Clock data after conversion 16 bits, BIN

3) Suitable soft components

Operands Word soft elements Bit soft elements
System Constant | Module System
DIFfT|C|D|D|D|D|] KH |[I|Q|X|Y| M|S| T|C| Dnm
DD/ D|X|Y|M|S D| D
S °
D °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM; S includes S, HS; T

includes T, HT; C includes C, HC.

Descript

ion

H(L{ STOH |

& @)

HDO \ HD10 \

(HDO, HD1)—(HD10, HD11, HD12)

second — hour, minute, second

® \When the MO switches on, it converts clock data (hours, minutes and seconds) in three
consecutive registers led by HDO into second data, which is stored in register HD10 (double

word).

® Note: the correspondence of registers is fixed, that is, they are stored in order of hours,
minutes and seconds.
® The operands S occupy three registers. Do not use them for other purposes.

176

4-10-7 Clock compare [TCMP]

1) Summary
Compare three continuous clocks time.

Clock compare [TCMP]

16 bits TCMP 32 bits -

Condition Normally ON/OFF, Suitable XG1, XG2
rising/falling edge model

Hardware | Version V3.5.3a (or V3.3y) or | Software Version V3.5.3 or later
later

2) Operands

Operands | Function Model

S1 Soft component address for hours 16 bits, BIN

S2 Soft component address for minutes 16 bits, BIN

S3 Soft component address for seconds 16 bits, BIN

S4 PLC real time clock information first address 16 bits, BIN

D2 The compare result first address bit

3) suitable soft component

Operands Word soft elements Bit soft elements
System Constant | Module System
DIFfT|C|D|D|D|D| KH [I|Q [XY|M|S| T|C| Dn
DD|D|X|Y|M]|S D| D m

S1 o e

S2 o e

S3 ol e

S ol e

D o e

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM; S includes S, HS; T
includes T, HT; C includes C, HC.

Description

gloo (o)
TCMP ‘

D20 ‘ D21 ‘ D22 ‘ DBO‘ MO ‘

hour minute sacond hour minute sacond

[D20 [D21 [D22] > [D30 | D31 | D32 | MO set ON

[D20 [D21 [D22 | = [D30 | D31 | D32 | M1 set ON

[D20 [D21 [D22] < [D30 | D31 | D32 | M2 set ON

® M100 from OFF to ON, TCMP worked. Compare the three registers starting from S4 to three
177

registers S1, S2, S3 (year, month, day). When S1, S2, S3 is larger than S4 clock, MO is ON.
When S1, S2, S3 is equal to S4 clock, M1 is ON. When S1, S2, S3 is smaller than S4 clock,
M2 is ON.

® \When M100 is on, if the reference time (D20, D21, D22) or clock data (D30, D31, D32)
changes, the comparison result will change accordingly.

® \When M100 is set to off, that is, when the execution of TCMP command is stopped, M0~M2
still remains in the state before M100 is set to off.

For example:
X0
—H—ﬂ TRD ‘ D30 ‘
{ TCMP ‘ D20 ‘ D21 ‘ D22 ‘ D33 ‘ MO ‘
it S

The present clock is 15:32:49 30, July, 2014 Wednesday. So D33=15, D34=32, D35=49.
If the setting time is 16:40:21, D20=16, D21=40, D22=21, so YO=ON. If the setting time is
17:21:16, D20=15, D21=21, D22=16, so Y2=ON. If the setting time is 15:32:49, D20=15,
D21=32, D22=49, so Y1=ON.

4-10-8 Date (year, month, day) compare [DACMP]

1) Summary
Convert hour, minute, and second data to seconds [STOH]
16 bits DACMP 32 bits -
Execution Normally ON/OFF, Suitable XG1, XG2
condition rising/falling edge Models
Hardware Version V3.5.3a (or V3.3y) | Software Version VV3.5.3 or later
requirement | or later requirement

2) Operands

Operands | Function Model

S1 Soft component address for years 16 bits, BIN
S2 Soft component address for months 16 bits, BIN
S3 Soft component address for days 16 bits, BIN
S4 PLC real time clock information first address 16 bits, BIN
D2 The compare result first address bit

178

3) Suitable soft component

Operands Word soft elements Bit soft elements
System Consta | Module System
nt
DIF| T|C|D|D|D|D| KH |I|Q Y M| S| T|C| Dn
DIDID| X|Y|M]|S D| D m

S1 ol e
S2 ol e
S3 ol e
S ol e
D o e

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM

includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM; S includes S, HS; T

includes T, HT; C includes C, HC.

Description

M100 (o)

- DACMP ‘ D20 ‘ D21 ‘ D22 ‘ D30 ‘ MO
year month day year month day

[D20 [D21 [D22 | > [D30 | D31 [D32 | MO set ON

[D20 [D21 [D22 | = [D30 | D31 | D32 | M1 set ON

[D20 | D21 |

D22 | < [D30 | D31 [D32 | M2 set ON

® When M100 changes from off to on, DACMP instruction is executed, and three registers
(year, month and day of the real-time clock) starting from D30 compare to D20, D21 and
D22, and the corresponding coil is set to on according to the comparison result. When the
year, month and day composed of D20, D21 and D22 are greater than D30, D31 and D32,
MO is set to on. When the year, month and day composed of D20, D21 and D22 are equal
to D30, D31 and D32, M1 is set to on. When the year, month and day composed of D20,

D21 and D22 are less than D30, D31 and D32, M2 is set to on.

When M100 is on, if the benchmark date (D20, D21, D22) or date data (D30, D31, D32)
changes, the comparison result will change accordingly.
When M100 is set to off, that is, when the execution of TCMP command is stopped,

MO~M2 still rema

ins in the state before M100 is set to off.

179

For example:

M100
H%f‘ TRD ‘ D30 ‘

4 DACMP ‘ D20 ‘ D21 ‘ D22 ‘ D30 ‘ MO ‘

MO

- <>

M1

- <>

M2

e <>
For example

The present clock is 15:32:49 7,30,2014 Wednesday. So D30=14, D31=7, D32=30. If the
setting time is 1,6,2015, D20=15, D21=1, D22=6, Then Y0=ON.If the setting time is
7,30,2014, D20=14, D21=7, D22=31, then Y1=ON. If the setting time is 6,31,2014, D20=14,
D21=6, D22=31, then Y2=ON.

180

5 HIGH SPEED COUNTER (HSC)

This chapter will introduce high speed counter’s functions, including high speed count model,
wiring method, read/write HSC value, reset etc.

Instructions List for HSC

TG Function Instruction Chapter
name
HSC read/write
No 24-segments single CNT |Hsco | Eloon =
CNT ohase |+ cwt [msco k100 | 5-7-1
CNT_AB | No 24-segments AB phase | |—i+—]CHT_4B [Hsco [K10m0 | 5-7-2
RST HSC reset [573
DMOV | HSC read |—+—{ pmov [rsco] oo | 5-7-4
DMOV | HSC write |—+—{ prov [paom [sco | 5-7-5
Single-phase 100-segments
CNT high-speed counting (with }—“—| CHT | HiCO | E1000 |D'3' | 5-9-2
interruption)
AB phase 100-segments
CNT_AB | high speed counting (with }—H—| CHT_AE | HiCO |K1'I"3' | Lo | 5-9-3
interruption)

5-1 Functions Summary

XG1, XG2 series PLC has HSC (High Speed Counter) function which will not affect by the
scanning cycle. Via choosing different counter, test the high speed input signals with detect
sensors and rotary encoders. The highest testing frequency of XG1 can reach 80KHz. The
highest testing frequency of XG2 can reach 200KHz.

Count input

B A
Sensor % Rotary encoder
@
= & &
‘ O ‘ O ‘ O ‘ O ‘ <.>
oJlo]Jo]Jo] o] <
[CcoM [X1 | X3 | X5]
[COM | X0 | X2 | x4 | X6 |

181

Note:

(1) The high-speed counting input of XG1 series PLC can only receive the open collector
signal (OC), not the differential signal. Please be sure to choose the encoder of the open
collector signal (OC).

(2) The high-speed counting input of XG2 series PLC can only receive differential signal
(DIFF) and cannot receive open collector signal. Please be sure to select the encoder of
differential signal (DIFF).

Counting input

B+ A+ A- % | Rotary
B- sensor encoder
= 7 @)
[O[[]o] o] o] (o) -
oJlo]ofo]o]
[X0+ [Xo- [X2 [Xa+ |
‘ X1+ ‘ X1- ‘ X3+ ‘ X3- ‘ X4- ‘

(3) When the counting frequency is higher than 25Hz, please select a high-speed counter.

5-2 HSC Mode

XG1, XG2series high speed counter has two working mode: Single-phase increasing mode
and AB phase mode.

Single-phase Increasing Mode

Under this mode, the count value increase at each pulse’s rising edge.

. 1 —
count mput
0 _

counter's
current valie

0_

182

AB Phase Mode

Under this mode, the HSC value increase or decrease according to two differential signal (A
phase and B phase). According to the multiplication, we have 2-time frequency and 4-time
frequency, but the default count mode is 4-time frequency mode.

2-time frequency and 4-time frequency modes are shown below:

2-time Frequency

Aphase 1—
input 0 J LT L L L
B phase 1 TS D B T
input 0 \ 4 LA ‘u‘ VLA V_A L
10
9
18
7
L6]
14
13
Counter =5
current S
value o | L0
4-time Frequency
Aphase 11— ST w Tl e Tl w B eSS
B phase 1-— B f— SE — By £§—— -
S e
T R
I
i R
1l
I il
Counter current O H
value 0— —ttte S
15 10 15 20 20 15 10 S 1

183

5-3 HSC Range

HSC’s count range is: K-2,147,483,648 ~ K+2,147,483,647. If the count value overflows this
range, then overflow or underflow appears.

Overflow means the count value jumps from K+2,147,483,647 to K-2,147,483,648, then
continue counting; underflow means the count value jumps from -2,147,483,648 to
+2,147,483,647 then continue counting.

5-4 HSC Input Wiring

For the counter’s pulse input wiring, things differ with different PLC model and counter
model; several typical input wiring diagrams are shown below: (take XG1-16 HSCO as the
example):

Counter (HSCO) Counter (HSCO)

Pulse input A phase input
(B phase input

[of[o]o o] [of[o]o[oO]
[olo]o]lo]o] o]t]o]o] o]

[coM | X1 [X3 | X5] [coM | X1 | X3 | X5]
[COM | X0 | X2 | X4 | X6 | [COM | X0 | X2 | x4 | X6]

Increasing mode AB phase mode

5-5 HSC ports assignment
Each letter’s Meaning:

U A B Z
Pulse input A phase input B phase input Z phase pulse catching

Note: Z phase signal counting function is in developping.

X can use as normal input terminals when there are no high speed pulses input. In the
following table, 2 means double frequency; 4 means quadruple frequency; 2/4 means that
double frequency and quadruple frequency can be adjusted.

XG1-16T4
Increasing mode AB phase mode
HSCO |HSC2| HSC4 | HSC6 | HSC8 |[HSC10HSC12| HSCO |HSC2| HSC4 |HSC6| HSC8
Max 80K | 80K | 80K | 80K 50K | 50K | 50K | 50K
frequency
Quadruple 214 2/4 2/4 2/4
frequency

Counter N J N N

interruption

T N

X000

W|>| <

X001

184

X002

X003

w|>

X004

X005

w|>

X006

X007

w|>

XG2-26T4

Increasing mode

AB phase mode

HSCO

HSC2

HSC4

HSC6

HSC8HSC10HSC12

HSCO

HSC?2

HSC4

HSC6

HSC8

Max
frequency

200K

200K

200K

200K

200K

200K

200K

200K

Quadruple
frequency

2/4

2/4

2/4

Counter
interruption

\/

\/

\/

X000+

U+

X000-

X001+

X001-

X002

X003+

X003-

X004+

X004-

X005

X006+

X006-

X007+

X007-

X010

X011+

U+

X011-

X012+

X012-

Note: The AB phase high-speed counting frequency 800KHz of XG2-26T4 is in the 4-time
frequency mode. If it is in the double frequency mode, the AB phase high-speed counting
frequency is 400kHz.

185

5-6 AB phase counting frequency doubling setting

For AB phase counting, the double frequency number can be set in special FLASH data
registers SFD321, SFD322, SFD323... SFD330, 2 means double frequency; 4 means
quadruple frequency.

Register . . .
f—. Function Setting value Meaning
2 2 frequency doublin
SFD320 HSCO frequency quency dou ' 9
doubling 4 4 frequency doubling
HSC2 frequency 2 2 frequency doubling
SFDs21 doubling 4 4 frequency doubling
2 2f doubli
SEha HSC4 frequency requency doubling
doubling 4 4 frequency doubling
2 2f doubli
SFD323 HSC6 frequency requency doubling
doubling 4 4 frequency doubling
HSC8 frequency 2 2 frequency doubling
SFD324 doubling 4 4 frequency doubling
2 2 frequency doublin
SFD325 HSC10 frequency réquency dou ' g
doubling 4 4 frequency doubling
2 2 frequency doublin
SFD326 HSC12 frequency quency : 9
doubling 4 4 frequency doubling
SED327 HSC14 frgquency 2 2 frequency doubl!ng
doubling 4 4 frequency doubling
2 2 frequency doublin
SFD328 HSC16 frequency quency : 9
doubling 4 4 frequency doubling
HSC18 frequency 2 2 frequency doubling
SFD329 doubling 4 4 frequency doubling

Note: After the SFD register is modified, it is necessary to restart the high-speed counter
(i.e. disconnect and reboot the drive condition) in order to make the new configuration
effective!

5-7 HSC instruction

This section introduces the usage of single-phase high-speed counting instruction (CNT), AB-
phase high-speed counting instruction (CNT_AB), reset of high-speed counting, reading and
writing of high-speed counting.

5-7-1 Single phase HSC [CNT]

1)Instruction Summary
Single phase HSC instruction

Single phase HSC [CNT]

16 bits Instruction - 32 bits Instruction CNT

Execution condition Normally ON/OFF | Suitable models XG1, XG2
coil

186

Hardware

requirement

Software -
requirement

2)Operands
Operands | Function Type
S Specify HSC code (Eg. HSCO0) 32 bits, BIN
D Specify comparison value (Eg. K100, DO) 32 bits, BIN
3)Suitable Soft Components
Operands Word soft elements Bit soft elements
System Constant | Module System
DIFDJT[cD[DX[DY[DM[DS| K/H [ID][QD[X][Y[M][S|[T[C]Dnm
S1 Only can be HSC
2 Jel [[| [[| | |

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;

DM includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM; S includes S, HS;
T includes T, HT; C includes C, HC.

FUNCTIONS AND ACTIONS

MO (s1) (s2)
}—H—{CNT\ HSCO‘ D20 \

When MO is on, HSCO counts X0 signal in single phase mode, compares the high-speed
counting value with the value set in register D20. When the high-speed counting value is
equal to the set value, HSCO coil is set on immediately, and the counting value is
accumulated in HSCDO (double words).

If countings complete and the driving condition MO is not disconnected, HSCO will
remain ON state and continue counting, and the counting value in HSCDO will continue
to accumulate.

If countings complete and the driving condition MO is disconnected, HSCO will remain on
state and the counting value in HSCDO will remain unchanged.

During the counting process, if MO is disconnected and connected again, the values in
HSCDO will continue to accumulate after the last counting value.

In the counting process, if the setting value in D20 changes and the current counting value
is less than the new setting value, then the new setting value is compared.

The edge mode of single-phase high-speed counting can be set using SFD310 to SFD313
(corresponding to HSCO to HSC6 respectively). Take HSCO as an example, SFD310 is O:
rising edge count; 1: indicates falling edge counting; 2: indicates that both rising and
falling edges count.

Note: This function is supported only by PLC firmware version V3.5.3 (or VV3.3y) and later.

187

5-7-2 AB phase HSC [CNT_AB]

1)Instruction Summary
AB phase HSC instruction.

AB phase HSC [CNT_AB]

16 bits Instruction

32 bits Instruction | CNT_AB

Execution condition | Normally ON/OFF | Suitable models XG1, XG2

coil
Hardware - Software -
requirement requirement
2)Operands
Operands | Function Type
S Specify HSC code (Eg. HSCO0) 32 bits, BIN
D Specify the comparison value (Eg. K100, DO) 32 bits, BIN

3)Suitable Soft Components

Operands Word soft elements Bit soft elements

System Constant | Module System

D|FD[TD|CD|DX][DY]|DM|DS K/H DD [X][Y[M][S]|T]|C

Dn.m

S1

Only can be HSC

S2

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS. M includes M,HM,SM; S includes S,HS;
T includes T,HT; C includes C, HC.

FUNCTIONS AND ACTIONS

(s1) (s2)

}—'\{M}J—{ CNT_AB | HSCO | D20 |

When MO is on, HSCO counts X0, X1 signal in AB phase mode, compares the high-speed
counting value with the value set in register D20. When the high-speed counting value is
equal to the set value, HSCO coil is set on immediately, and the counting value is
accumulated in HSCDO (double words).

If the driving condition MO is not disconnected, HSCO will remain on state and continue
counting, and the counting value in HSCDO will continue to accumulate.

If the driving condition MO is disconnected, HSCO will remain on state and the counting
value in HSCDO will remain unchanged.

During the counting process, if MO is disconnected and connected again, the values in
HSCDO will continue to accumulate after the last counting value.

In the counting process, if the setting value in D20 changes and the current counting value
is less than the new setting value, then the new setting value is compared.

188

5-7-3 HSC reset [RST]

The reset mode of high-speed counter is software reset mode.

MO
| CNT | HSCO | K12000 |
M1

#— RST | HSCO

As shown above, when MO is ON, HSCO begins to count the pulse input of X0 port; when M1
changes fromOFF to ON, HSCO is reset, and the count value in HSCDO (double words) is

cleared.

5-7-4 Read HSC value [DMOV]

1)Instruction Summary

Read HSC value to the specified register;

Read HSC value [DMOV]

16 bits Instruction - 32 bits Instruction DMOV
Execution Normally ON/OFF, | Suitable models XG1, XG2
condition rising/falling edge
Hardware Software -
reguirement reguirement
2)Operands
Operands | Function Type
S Specify HSC code 32 bits, BIN
D Specify the read/written register 32 bits, BIN
3)Suitable Soft Components
Operands Word soft elements Bit soft elements
System Constant | Module System
DJFD|T[cD[DX|DY[DM|DS| K/H [ID][QD[X][Y|[M][S|[T][C]Dnm

S1 Only can be HSC

2 Jel [[[[[[[[|

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS. M includes M,HM,SM; S includes S,HS;
T includes T,HT; C includes C, HC.

FUNCTIONS AND ACTIONS

(s.)
}HH DMOV | Hsco | D10 |

e When the trigger condition is established, the high-speed count value in the accumulative
register HSCDO (double words) corresponding to HSCO of the high-speed counter is read
into the data register D10 (double words).

e High-speed counter can not directly participate in any application instructions or data

189

comparison instructions (such as DMUL, LD > etc.) except DMOV, but can only be carried

out after reading and writing into other registers.

e As high speed counter is double words counter, so it must use 32-bit instruction DMOV.

e DMOV often uses together with high speed counter.

Program example:

5-7-5 Write HSC value [DMOV]

1)Instruction Summary

SMO
| } CNT_AB ‘ HSCO‘ K999999999 F
% DMOV ‘ HSCO‘ D10 F
SMO
1 } CNT_AB \ HSCZ‘ K999999999 %
% DMOV ‘ HSCZ‘ D20 %
D10 K1000 Y0
iD= (s
D20 K1000
D=

Write the specified register value into HSC;

Write HSC value [DMOV]

requirement

requirement

16 bits - 32 bits DMOV
Instruction Instruction

Execution Normally ON/OFF, Suitable models | XG1, XG2
condition rising/falling edge

Hardware Software -

2)Operands
Operands | Function Type
S Specify HSC code 32 bits, BIN
D Specify the read/written register 32 bits, BIN
3)suitable soft components
Operands Word soft elements Bit soft elements
System Constant | Module System
DIFD[TD[CD[DX[DY[DM[DS| K/H [ID|[OD|[X|[Y[M]|[S|T]|]C]Dnm
S1 Only can be HSC
2 [e]l [| | || [

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;

DM includes DM, DHM; DS includes DS, DHS. M includes M,HM,SM: S includes S,HS;

T includes T,HT; C includes C, HC.

190

FUNCTIONS AND ACTIONS

MO (s)
D20

1 DMOV HSCO

e When the trigger condition is established, The value in the double-word data register D20 is
written into the accumulative register HSCDO (double-word) corresponding to the HSCO of
the high-speed counter, and the original data is replaced.

e High-speed counter can not directly participate in any application instructions or data
comparison instructions (such as DMUL, LD > etc.) except DMOV, but can only be carried
out after reading and writing into other registers.

e As high speed counter is double words counter, so it must use 32-bit instruction DMOV.

e DMOV often uses together with high speed counter.

5-7-6 The difference between HSC and normal counter

Although the instructions of high-speed counter use "CNT" in the same way as those of
ordinary counter, their functions are quite different.

When MO is changed from OFF to ON once, the value of common counter is added 1.

The high-speed counter trigger condition must be in the normally closed state when counting,
which is equivalent to the high-number counter being activated, but the value of the high-
number counter does not change. Only when the corresponding external signal input terminal
receives the signal, the high-number counter counts. If the external signal input terminal has
signal input and its trigger condition is not closed, the high-number counter will not count.
The difference is shown in the following table:

Counter type Instruction format Function
Normal Mo Count the OFF to ON times of MO, when
counter A {ent [co [kao00] the counting value reaches 2000, CO is ON.

When MO is ON, count the X0 input signal,
High-speed Mo when the counting value reaches 2000,
counter H F enT | Hsco [k2000 | HSCO is ON, MO should be always ON
when counting.

5-8 HSC Example

The following takes XG1-16 as an example to show the programming method of HSC.

Single-phase increasing mode

MO
| — ONT | Hsco | K2000
M1

— RsT | Hsco

191

e When the MO is ON, HSCO counts the rising edge of the OFF to ON of the input X0 port at
high speed.
e When M1 rising edge comes, reset HSCO high-speed counter and HSCDO (double word).

SMO
I} CNT HSCO | K88838388
L DMOV HSCO DO
M1
il RST HSCO
DO D2 (
——D <] YO
D<i \) Since the high-speed count value is 32-bit, the
DO D2 DO D4 (instructions here are all 32-bit
[| x
D= ID< (vi) instructions.Such as DMOV, DLD<,
DO D4 DLD=
D= (y2)

e When SMO is on, HSCO counts X0 port in single-phase incremental mode, the setting
value is K888888, and reads the high-speed counting value to DO (double-word) in real
time.

e When DO (double words) is less than D2 (double words), YO is ON, when DO (double
words) is equal to or larger than D2 (double words) and less than D4 (double words), Y1
is ON. when DO (double words) is equal to or larger than D4 (double words), Y2 is ON.

e When ML1 rising edge is coming, reset HSCO and HSCDO(double words).

e As the high speed counter is double words counter, please use double words instruction
DLD <and DLD >.

AB phase input mode

M8

|| CNT_AB | HSCO | K999999

SMO

| | DMOV | HSCO DO
DO K3000

D= (v2)

M9

I RST HSCO

e When M8 is ON, HSCO starts to count. The signal inputs from X0 (A phase) and X1 (B
phase).

e When SMO is ON, the value in HSCDO (double words) related to HSCO is written to DO
(double words) in real-time.

e When the present counting value is over 3000, Y2 is ON.

e When the rising edge of M9 is coming, reset HSCO and HSCDO (double words).

192

RST HSCO

{ L CNT_AB | HSCO K88888888

DMOV HSCO DO

DO KO DO K100

—iD=f D< (yo)
Since the high-speed count value is 32-bit, the
D0 K100 DO K200 . . .
{DZ} {D<} (V1) instructions here are all 32-bit
instructions.Such as DMOV, DLD<,
DO K200 DLD=
—p= (v2)

e When the rising edge of the original forward pulse coil SM2 comes, that is, at the
beginning of each scanning cycle, HSCO is reset and the counting value in HSCDO is
cleared.

e When coil SMO is on, HSCO begins to count X0 and X1 ports in AB phase mode. The
setting value of counting is K888888. At the same time, the counting value in HSCDO
(double words) is written into DO (double words) in real time.

e When the counting value in DO (double words) is greater than KO and less than K100, the
output coil YO is ON; when the counting value in DO (double words) is greater than or
equal to K100 and less than K200, the output coil Y1 is ON; and when the counting value
in DO (double words) is greater than or equal to K200, the output coil Y2 is ON.

e Since the high-speed counter is a double words counter, it is necessary to use the double
words comparison instruction DLD > and DLD < for comparison.

5-9 HSC interruption

5-9-1 Function overview and panel configuration

For XG series PLC, some high-speed counters (referring to the high-speed counting input port
allocation table of chapter 5-5 of each type of PLC) have a set value of 32 bits in 1-100
sections. When the difference of high-speed counting equals to the set value of corresponding
100 sections, the interruption will occur according to the corresponding interruption mark.

If the set value of N segment is set, there must be interrupt mark and interrupt program
corresponding to N segment. The interruption marks corresponding to each high-speed
counter are shown in chapter 5-9-4.

When using high-speed counting interrupt function, instructions can be written directly (see
chapters 5-9-2 and 5-9-3), or can be configured by software panel. Please click @ in the
XDPPro software, it will show below window.

193

' Single phase 100 seament high speed counting vl
I-ighSpeed Compare Value: Interupt Address:
[] Opposite [+] Absolute [Circulate [] cam
Config Value
Compare Value: 39999999 |5 Section Mum: |3 =

Section Num Value
Segmentl Count Hum: =]
Segment? Count Hum: 20000
Segment3 Count Hum:

Read FromPLC | | Wite ToPLC | | OK | | Cancel

In this panel, we can configure the parameters related to high speed count interruption. Take
the settings in above figure as an example to explain each parameter function.

Parameter Function

single phase 100

segments high speed High Speed Counting in Single Phase

Incremental Mode

| Singl phase 100 e counting
100 seg_ments AB High Speed Counting in AB phase
phase high speed
. mode
counting
N i High-speed counter number
High Speed C HSCO v Elif)co HSC18(32 corresponding to high-speed input
port
Compare Value: IWI Free to specify HSCO is ON when the count value is

equal to the value in the register.

When it counts to the comparison
value, HSCO is ON, the comparison
value can be set here or put in
compare reigster D500.

Compare Value: 99393939 3 | Free to specify

It will produce the interruption of
segment N when the counting value =

Relative segment N-1 interruption counting
[] Opposite Absolute value + segment N setting value.
It will produce the interruption when
Absolute the counting value is equal to setting
value.

The set values of 100 segments of

Intemupt Address: HD100 i . T
D0 | Freeto specify high-speed counting interrupts are

194

stored in the registers starting from
HD100, and the set values are stored
in the double-word registers HD100,
HD102, HDI104....

[] Girculate

L] Cam

Interruption cycle

It must be used in relative mode.
When all interrupts are over, high-
speed counting interrupts can still be
generated circularly.

CAM

It must be used in absolute mode.
When the counting value equals any
set value, interruption occurs.

Section Num: 3

+ | 1~100 optional

If set to 3, it means execute three
high-speed counting interrupts

Value

Free to specify

Each segment corresponds to an

to the address block starting from
HD100; the interrupt time is
determined by the relative/absolute
count mode

interrupt count value, which is written

For detailed usage of the above parameters, please see the following chapters.
After writing to the PLC and clicking "OK", the high-speed count interrupt instruction
configuration is completed, as shown in the following figure:

} CHNT HSCO D500 HD100
5-9-2 Single phase 100-segment HSC [CNT]
1)Summarization
Single phase 100-segment HSC instruction.
Single phase 100-segment HSC [CNT]
16-bit instruction - 32-bit instruction | CNT
Execution condition | Normal ON/OFF Suitable model XG1, XG2
Hardware - Software -
regquirements requirements
2)Operands
Operands | Function Type
Sl Set the HSC (for example: HSCO) 32 bits, BIN
S2 Set the compare value (eg. K100, DO) 32 bits, BIN
S3 Set the 100-segment setting value 32 bits, BIN

3)Suitable soft components

Operands Word soft elements Bit soft elements
System Constant | Module System
D[[T[cD[DX[DY[DM[DS|[KH [ID]J]OD|[X[Y[M[S]T[cC][Dnm
S1 Only can be HSC
S2 ° °
S3 °

195

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS. M includes M,HM,SM; S includes S,HS;
T includes T,HT; C includes C, HC.

Description

MO (s1) (s2) (s3)
}—{ }—{ CNT \ HSCO \ HDO \ HDlOO‘

When the high-speed counter HSCO counts in single-phase mode, high-speed
counting value is compared to data block starting from HD100 (such as HD102,
HD102, HD104 and other double-word registers), it will immediately produce the
corresponding high-speed counting interrupt when the condition is met, each section
of the corresponding interrupt marks please refer to chapter 5-9-4.

During the high-speed counting process, it is invalid to modify the set value of 100
segments.

In the process of high-speed counting, the driving condition MO can not be
disconnected. If MO is disconnected and then rebooted, no interruption will occur.
The high-speed counter must be reset first, and thenset ON MO again to produce
interruption.

When the interrupt is finished in a single execution, if it needs to start the interruption
again, the high-speed counter must be reset first, and then the driving condition must
be ON again.

In interrupt loop mode, interrupts can be generated in sequence as long as MO
remains on state.

5-9-3 AB phase 100-segment HSC[CNT_AB]

1)Summarization
AB phase 100-segment HSC instruction.

AB phase 100-segment HSC [CNT_AB]

16 bits instruction - 32 bits instruction CNT_AB
Execution condition | Normal ON/OFF Suitable model XG1, XG2
Hardware - Software -
regquirements reguirements

2)Operands
Operands | Function Type
S1 Set the HSC (such as:HSCOQ) 32 bits, BIN
S2 Set the compare value (such as: K100, D0) 32 bits, BIN
S3 Set the 100-segment setting value 32 bits, BIN

196

3)Suitable soft components

Operands Word soft elements Bit soft elements
System Constant | Module System
DJIFO[TD[cD[DX[DY[DM[DS| K/H [ID[QD[X]Y[M][S]T[C]Dnm
S1 Only can be HSC
S2 ° °
S3 °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS. M includes M,HM,SM; S includes S,HS;
T includes T,HT; C includes C, HC.

Description

(s3)

}—'\{M})—{ CNT_AB \ HSCO \ HDO \ HD100 \

e When the high-speed counter HSCO counts in AB phase mode, high-speed counting
value is compared to data block starting from HD100 (such as HD102, HD102,
HD104 and other double-word registers), it will immediately produce the
corresponding high-speed counting interrupt when the condition is met, each section
of the corresponding interrupt marks please refer to chapter 5-9-4.

e During the high-speed counting process, it is invalid to modify the set value of 100
segments.

e In the process of high-speed counting, the driving condition MO can not be
disconnected. If MO is disconnected and then rebooted, no interruption will occur.
The high-speed counter must be reset first, and thenset ON MO again to produce
interruption.

e When the interrupt is finished in a single execution, if it needs to start the interruption
again, the high-speed counter must be reset first, and then the driving condition must
be ON again.

e In interrupt loop mode, interrupts can be generated in sequence as long as MO
remains on state.

197

5-9-4 Interruption flag of HSC

The 100 segments interruption flags of each HSC are in the following table. For example, the
100 segments interruption flags of HSCO are 12000, 12001, 12002..... 12099.

Interruption flag
HSC Segment 1 Segment 2 | Segment 3 ... | Segment N Segment 100
HSCO 12000 12001 12002 1(2000+N-1) 12099
HSC2 12100 12101 12102 1(2100+N-1) 12199
HSC4 12200 12201 12202 1(2200+N-1) 12299
HSC6 12300 12301 12302 1(2300+N-1) 12399
HSC8 12400 12401 12402 1(2400+N-1) 12499
HSC10 12500 12501 12502 1(2500+N-1) 12599
HSC12 12600 12601 12602 1(2600+N-1) 12699
HSC14 12700 12701 12702 1(2700+N-1) 12799
HSC16 12800 12801 12802 1(2800+N-1) 12899
HSC18 12900 12901 12902 1(2900+N-1) 12999

5-9-5 Setting value meaning in absolute or relative mode

The setting value meaning is different in absolute and relative mode. Relative/absolute mode
can be set in the software panel. It can also be modified by special Flash register SFD330.
(Note: Driving conditions must be OFF and ON again to make the configuration effective.)
0: Relative mode;
1: Absolute mode.

¢ Relative mode
In relative mode, the set value of high-speed counting 100 segments is relative cumulative
value. When the set value of counting equals the sum of the interruption count value of N-1
segment and the set value of N segment, the segment N interrupt is generated.
N interrupt markers correspond to N interrupt settings. The N+1 interrupt settings register is
reserved for other purposes.

Examplel:

The current value of HSCO is 0, segment one preset value is 10000, the preset value in
segment 2 is —5000, the preset value in segment 3 is 20000. When starting to count, when
the counter's current value is 10000, it generates the segment 1 interruption 12000; when the
counter's current value is 5000, it generates the segment 2 interruption 12001; when the
counter's current value is 25000, it generates the segment 3 interruption 12002.

198

See graph below:

HSCO HDO | HD1 | HD2 | HD3 | HD4 | HDs
KO K10000 K-5000 K20000
HSC0=K0+K10000=K10000 | 2000
HSC0=K10000+ (K-5000) =K5000 12001
HSC0=K5000+K20000=K 25000 12002
Y

Example 2:

HSC2 current value is 10000, the segment one preset value is 10000, the preset value of
segment 2 is 5000, the preset value of segment 3 is 20000. When starting to count, when the
counter's current value is 20000, it generates the segment 1 interruption 12100; when the
counter's current value is 25000, it generates the segment 2 interruption 12101; when the
counter's current value is 45000, it generates the segment 3 interruption 12102.

See graph below:

HSC?2 HDO | HD1 | HD2 | HD3 | HD4 | HDs
K10000 K10000 K5000 K20000
HSC2=K10000+K10000=K20000| 2100
g
HSC2=K20000+K5000=K25000 12101
|
\ J
HSC2=K25000+K20000=K45000 12102
|

199

e Absolute Mode
In absolute mode, interruption occurs when the count value equals the set value of each

section of the counter. N interrupt markers correspond to N interrupt settings. The N+1
interrupt settings register is reserved for other purposes.

Example 1:

The current value of counter HSCO is 0, the setting value of segment 1 is 10000, the setting
value of segment 2 is 15000, and the setting value of segment 3 is 20000. When it starts
counting, if the current value of the counter is 10000, the segment 1 interruption 12000 is
generated; when the current value of the counter is 15000, the segment 2 interruption 12001 is
generated; when the current value of the counter equals 20000, the segment 3 interruption
12002 is generated.

HSCO HDO HD1 HD2 HD3 HD4 HDS5
KO K10000 K15000 K20000

12000

HSCO= K10000

v

HSCO0= K15000 12001

v

HSCO0= K20000 12002

v

Example 2:

The current value of counter HSC2 is 5000, segment 1 set value is 10000, segment 2 set value
is 5000, and segment 3 set value is 20000. When it starts counting, if the current value of the
counter is 10000, segment 1 interrupt 12100 is generated; when the current value of the
counter is 5000, segment 2 interrupt 12101 is generated; when the current value of the counter
equals 20000, segment 3 interrupt 12102 is generated.

HSCO HDO HD1 HD2 HD3 HD4 HD5
KO K10000 K5000 K20000
HSCO0= K10000 12000

v

12001

HSCO0= K5000

v

12002

HSCO0= K20000

v

200

Note: When absolute counting is performed in non-cam mode, counting interrupts are
generated sequentially, i.e.,segment 1 interruption, segment 2 interruption, segment 3

interruption... When a segment interrupt occurs, no interrupt occurs even if the count value

reaches the set value of the segment again.

As in the example above, if the count value is increased from 4000 to 5000 and 10000 after
the interruption of segment 1 and 2, the interruption of segment 1 and 2 will not occur again,
and the interruption of segment 3 will occur when the count value continues to increase to

20000.

5-9-6 HSC interruption cycle mode

Mode 1: Single loop (normal mode)

The HSC interruption will not happen after it ends. The following conditions can start the

interruption again.
(1) reset the HSC

(2) Reboot the HSC activate condition

The interruption is generated as the following sequence when single loop execution:

Segment 1

interruption

Segment 2
interruption

Mode 2: Continuous loop

Continous loop interruption is only suitable for relative counting mode. In continuous loop
mode, the interruption will start again after it is completed. This mode is especially suitable

for the following application:
(1) continuous back-forth movement.
(2) Generate cycle interruption according to the fixed pulse.

When continuous loop interruption is performed (without cam function enabled), interrupts

occur in the following order:

The'last
segment

Segment 3
interruption

Segment N
interruption

Segment 1

/ interruption \

interruption

Segmen

tN

interruption

~

Segment 2
interruption

Segment 3
interruption

201

I'helast
segment
interrupntion

Via setting SFD331, users can switch betweensingle loop mode or continuous loop mode. The
detailed assignment is show below:
(Note: the settings will be effective after setting OFF and ON the driving condition again)

Address HSC Setting

Bit0 100 segments HSC interruption cycle (HSCO)

Bitl 100 segments HSC interruption cycle (HSC2)

Bit2 100 segments HSC interruption cycle (HSC4)

Bit3 100 segments HSC interruption cycle (HSC6)

Bit4 100 segments HSC interruption cycle (HSC8) 0: single loop
Bit5 100 segments HSC interruption cycle (HSC10) 1: continuous loop
Bit6 100 segments HSC interruption cycle (HSC12)

Bit7 100 segments HSC interruption cycle (HSC14)

Bit8 100 segments HSC interruption cycle (HSC16)

Bit9 100 segments HSC interruption cycle (HSC18)

5-9-7 CAM function of high speed counter interruption

High-speed counting cam: After setting all interruption set value, the high-speed counting
cam function is selected. When the high-speed counting value is equal to any of the
interruption set value, the corresponding high-speed counting interruption (the same as the
100-segment high-speed counting interruption marker) is executed immediately. When the
high-speed counting value changes repeatedly, the same high-speed interruption of the cam
can be executed repeatedly.

High-speed counting cam not only can fully realize the cyclic sequence interruption function
of ordinary electronic cam, but also can generate multiple times of positive and negative
single point interruption in single cycle. It is widely used in control systems of high-speed
winding machine and packaging machine.

Note: CAM function is only fit for absolute counting mode.

Cam function can be set by configuration panel in XINJE PLC software, or by special Flash
register SFD332: (Note: Drive condition must be set OFF and ON again to make
configuration effective)

0: cam function not enabled

1: Enable Cam Function

Example:

Four values are stored in four consecutive double-word registers starting with register HDO.
When HSCO starts to count, if the HSCO count value equals any of the four registers, the
corresponding interrupt signal will be generated immediately. As shown in the following
figure:

202

HSCO 4

HDB |————————mmmmm e

HD4 fmmmm e f

HD2 f—mm e

HDO |77

|
|
|
|
|
-+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
|

S

v v \ A vy Vv v
12000 12001 12002 12001 12002 12003 12002

5-9-8 Interruption using notes and parameter address

MO
| | CNT_AB | HsCO | k2000 | HDO |
M1
i | RST | HsCo |
LD MO /[HSC trigger condition MO (also interruption counting condition)
CNT_AB HSCO0 K2000 HDO /IHSC and 100-segment head address setting
LDP M1 /IHSC reset trigger condition
RST HSCO //HSC and 100-segment reset (also reset the interruption)

As shown in the above example (note: the interrupt sub-program is omitted, see the
application example in chapter 5-9-9). The data register HDO sets the region starting address
for the set value of 100 segments, and then stores the set value of 100 segments in double-
word form. Attention should be paid to using high-speed counting interrupts:

e The register after the last segment no needs to set 0, but should be reserved and
cannot be used for other purpose. For example, it has 3 segments, segment 1 is HDO,
segment 2 is HD2, segment 3 is HD4, then HD®6 is reserved.

e It is not allowed to set the interrupt setting value without writing the interrupt
program. Otherwise, errors will occur.

o 100-segment interrupt of high speed counter generate in turn, that is, if the first
interrupt does not occur, the second interrupt will not occur.

e In high speed counting process, if the present counting value is changed by DMOV,
ADD instruction (DMOV K1000 HSCDO), the interruption value will not change at
this time. Please do not change the HSCD value when the high speed counter is
running.

203

Some parameters can be modified in special Flash registers, as shown in the following table:

Parameter Register address | Setting value

Counting mode | SFD330 0: relative 1: absolute

Execution mode | SFD331 0: execution once 1: interruption cycle
CAM function | SFD332 0: not enable 1: enable cam function

The above parameters can also be configured by the configuration panel in the following way:
Move the mouse over the high-speed counting instruction and right-click it. Select "CNT_AB
Instruction Parameter Configuration” from the drop-down menu. A configuration panel will
appear to configure the parameters in this window. As shown in the following figure:

High Speed Count 24 Section Config
| Single phase 100 segmert high speed counting vl
High Speed CHSCO v | Compare Value: Intemupt Address:
Opposite || Absolute [Girculate [] Cam
Carfig Value
Compare Value: |3000 EI Section Num: |1 EI

Section Num Value

Segmentl Count Hum: 1]

| ReadFrom PLC | | WiteToPLC | [0K | | Cancel

5-9-9 Application of HSC interruption

Application 1:

When MO is ON, HSCO starts counting. The counting value is stored in the address starting
from HDO. When it reaches the set value, the interruption is produced. When the rising edge
of M1 is coming, clear the HSCO.

Method 1:Configure the parameters through XDPpro software:

High Speed Count 24 Section Config
|AE phase 100 segmert high speed counting N |

High Speed CHSCO v | Compare Value: Intemupt Address:
Frequence: Opposte [Absolute [Girculate [Cam
Config Value

Compare Value: 200000 EI Section Num: |2 EI

Section Num Value
Segment]l Count Hum: 10000

Segment? Count Hum: —10000

Read FromPLC | | Wite ToPLC | | OK | | Cancel

204

Configure item Function

High speed counter Choose HSC, the range is from HSCO to HSC18

Frequency Choose the HSC frequency doubling (2 or 4)

Compare value The value can be register or constant, in this example, when the
counting value reaches compare value, HSCO is ON. here the compare
value is 200000 which is saved in D10.

Relative and absolute | The HSC is relative mode or absolute mode

Interrupt address The starting registers to store 100 segments interruption preset value
Circulate 100 segments interruption mode is cycle or not
Cam The cam function is executed when any set value of 100-segment high

speed counting interruption equals the counting value.

Method 2: make the program

SMO
|| } DMOV ‘KlOOOO ‘ HDO ‘

DMOV ‘K-lOOOO‘ HD2 ‘

DMOV ‘ Kzooooo‘ D10 ‘
MO
I }CNT_AB\ HSCO \ D10 \ HDO \
M1
i } RST ‘ HSCO ‘

|

Instruction:

LD SMO0 //SMO is normally ON caoil

DMOV K10000HDO /Isegment one preset value HDO is 10000
DMOV K-10000 HD2 /lsegment 2 preset value HD2 is -10000
DMOV K200000 D10 //set HSC compare value

LD MO /IHSC activate condition MO

CNT_AB HSCO0D10HDO //HSC interruption instruction

LDP M1 /IHSC reset condition M1

RST HSCO /freset HSC and 100 segments interruption
FEND //the main program end

12000 //segment one interruption flag

LD SMO /ISMO is normally ON caoil

205

INC DO //D0= DO+1

IRET /linterruption return flag
12001 /lsegment 2 interruption flag
LD SMO /ISMO is normally ON coil
INC D1 /[D1=D1+1

IRET /linterruption return flag

Application 2: knit-weaving machine (continuous loop mode)

The machine principle: Control the inverter via PLC, thereby control the motor. Meantime,
via the feedback signal from encoder, control the knit-weaving machine and the precise

position.
AB phase HSC input
PLC -~
forward, backward control
speed 1 control feedback
signal
V5 series inverter
drive J
Motor —— Encoder
control ‘
Knit-weaving machine
| 12003 I
HSC0=K15000+(K-15000) _
| 12002 I
HSC0=K90000+(K-75000)
| 12001 I
HSC0=K75000+K15000 |
12000
HSC0=K0+K75000 |
Pulse frequency f Forward Reverse
Forward fastrun “Slow run = Reverse fast run "t sfow o
\ R
\ Time t
Forward run Reverse run

206

Below is PLC program:

Y2 represents forward output signal;

Y3 represents reverse output signal;

Y4 represents output signal of speed 1;

HSC2: Back-forth times accumulation counter;
HSCO: AB phase HSC;

|.‘\Ephase 100 segment high speed counting W |

Figh Speed CHSCO v, Compare Vae: ntemapt Address:
Frequence: Opposite [| Absolute [] Greulate [] Cam
Config Value

Compare Value: 1000000 EI Section Num: |4 EI

Section Num Value

Segment]l Count Fum: TS000

Segment? Count Hum: 15000

Segmentd Count Hum: =TS000

Segmentd Count Hum: -15000|

207

SM2 Y2

1 (s)

Y2

i } CNT ‘ HSC2 ‘ K1000000 ‘

I L{ CNT_AB \ HSCO \ DO ‘ D100 ‘

DMOV ‘ HSCO ‘ D200 ‘

SMO0 Y4
N (R)
Y2
(R)
Y3
(s)
IRET
12002
SMO Y4
f (s)
12003
SMO Y3
1] (R)
Y4
R)
Y2
S)

IRET

Instruction List;

LD SM2 /ISM2 is initial ON coil

SET Y2 /Iset ON Y2 (forward run)

LDP Y2 // Back-forth times activate condition Y2
CNT HSC2 K1000000 /IHSC2 starts counting

LD SMO //ISMO00O is normal ON coil

CNT_AB HSCO0 DO D100 //HSC 100 segments first address
DMOV HSCO D200 /fread HSCO counting value to D200
FEND /fmain program end

12000 /lInterruption 1 flag

LD SMO //SMO is normal ON coil

SET Y4 //set ON Y4 (run at speed 1)

IRET /linterruption return

12001 /linterruption 2 flag

208

LD
RST
RST
SET
IRET
12002
LD
SET
IRET
12003
LD
RST
RST
SET
IRET

SMO
Y4
Y2
Y3

SMO
Y4

SMO
Y3
Y4
Y2

//SMO is normal ON coil
Ilreset Y4 (stop running at speed 1)
Ilreset Y2 (stop forward running)
/Iset ON Y3 (reverse running)
/linterruption return
/linterruption 3 flag
//SMO is normal ON coil
//set ON Y4 (run at speed 1)
/linterruption return
/linterruption 4 flag
//SMO is normal ON coil
/lreset Y3 (stop reverse running)
/lreset Y4 (stop running at slow speed)
/set on Y2 (forward running)
[linterruption return

209

6 Communication Function

This chapter mainly includes: basic concept of communication, Modbus

communication and free communication.

Relative Instruction

Mnemonic Function Circuit and soft components Chapter
MODBUS Communication

COLR Coil Read }—H—' COLR | st| sz | s3 | pi| 2| 6-2-3
INPR Input coil read }—H—‘ INPR‘ S1 ‘ S2 ‘ S3 ‘ D1 ‘ D2 ‘ 6-2-3
coLw Single coil write }—H—' COLW‘ Dl‘ D2 ‘ S1 ‘ S2 ‘ 6-2-3
MCLW Multi-coil write | |1 Mctw [o1 2 [3] si [s2 | 6-2-3
REGR Register read }—H—' REGR | 51| s2[s3 |1 [p2 | 6-2-3
INRR 'rggg”egmer }—H—' IBIEIEIERER 6-2-3
REGW \fv'rr:?&!e register }—H—' REGW | D1 | D2 [51| s2 | 6-2-3
MRGW Multi-register }—H—' MRGW | D1 D2| D3| s1] s2 | 6-2-3
Free Communication

SEND Send data }Hw% SEND | D10 | D10 | K2 | 6-3-4
RCV Receive data | Rrcv | D20 [D200 | K2 | 6-3-4
Read and write serial port data

CFGCR Read serial port | CcFecR | HDO | K7 | K2 | 6-5-1
CFGCW Write serial port ———{ cFecw | Do | k8 | K2 | 6-5-2

6-1 Summary

XG1, XG2 series PLC main units can fulfill your requirement on communication and network.
They not only support Modbus RTU, but also support Modbus ASCII and field bus X-NET,
Ethernet and EtherCAT communication. XG1, XG2 series PLC offer multiple communication
methods, with which you can communicate with the devices (such as printer, instruments etc.)
that have Modbus communication protocol.

6-1-1 COM port

COM Port

210

XG1 series PLC main body has 4 communication ports (portl, port2, USB port, LAN port).
XG2 series PLC main body has 5 communication ports (portl, port2, port3, LAN1 port,
LAN2 port).

The distribution positions of communication ports are as follows:

(=i
AN
=)

] ialiaksd] Y
HEH

s
B ="

g
=}

g|EFRER m
1= =[z]

XG1 series PLC

COM1

COM2

RI45

USB port

hilil]
[T

COM1

e ——

| [T T
il I3 |
EE - -
T I - 3
1 [[H HHH

E3) nin

XG2 series PLC

COM2

COM3

RI45 portl
RI45 port2

The definitions and functions of each communication port are shown in the following table:

XG1 NE Appearance | Interface S Function
protocols
Programs can be
downloaded and
cOM1 external devices can be
Modbus RTU, connected.
] COML RS232 Modbus ASCII, | Communication
Free format parameters can be reset
communication | through programming
software or serial port
configuration software
Xinjeconfig
Modbus RTU,
Modbus ASCII, | Programs can be
coM1 | com? Free fo_rmgt downloaded and
communication, | connected to external
X-NET fieldbus | devices, and
(XG2 not support) | communication
m Modbus RTU, parameters can be reset
g% N RS485 Modbus ASCII, | through programming
N Free format software or serial port
N communication, | configuration software
COM2 | COM3 M X-NET fieldbus | Xinjeconfig. X-net

(XG2 not
support), X-
NETmotion bus
(XG2 not support)

motion bus supports
20-axis motor
synchronous motion

211

XG2 Supported

XG1 Appearance | Interface Function
protocols

High speed and stable
downloading /
uploading of programs
RJ45 % Ethernet and data, remote

RJ45 Lo -
portl communication | monitoring, and
communication with
TCP IP devices in the
LAN

RJ45

EtherCAT
communicate with
servo with EEPROM,

- RJ45 % RJ45 EtherC_AT and support
port2 communication
synchronous

movement of 32-axis
motor

High speed download
port, you can download
the program through
use | - usB | oNET | the USB download

cable JC-UA-15, but
you need to install the
USB driver first

Note:

% 1: XG1 series has no RS232 port, XG2 series has no USB port.

%2: XG series PLC portl supports stop PLC when reboot function, but XG1 series PLC
needs to transform the RS485 port to RS232 port.

%3: XG2 series PLC cannot support X-NET motion bus, PORT1/PORT2/PORT3 cannot
support X-NET fieldbus.

%4: X-NET bus, Ethernet communication, EtherCAT bus function are not within the scope
of this manual, please refer to the x-net bus user manual, Ethernet based TCP IP
communication user manual, and EtherCAT bus user manual.

RS232 port (COM1)

4: RxD
5: TxD
8: GND

Mini Din 8-pin plug (holes)

212

RS485 port (COM2, COM2, COMB3)
About RS485 port, A is “+” signal. B is “-” signal. XG series PLC RS485 port is put outside.
SG terminal is signal ground. The terminal diagram is shown as below:

o]

10
| TT1)|se
1]
LI

> @

%3%8%8%]

&

Please use twisted pair cable for RS485. (See below diagram). But shielded twisted pair cable
is better and the single-ended connects to the ground.

/

Send

NIN\DNEA_| receive

ise

Jx
receive >_ "\:_"_-\:_/'< send

Portl of XG1 series PLC supports MODBUS and X-NET fieldbus communication, and port2
supports modbus, X-NET fieldbus and X-NET motion bus. Please refer to X-NET bus user
manual for details. Port2 and port3 ports of XG2 series PLC only support Modbus
communication.

USB port
When downloading programs and data through the USB port, the USB driver and
XINJEConfig tool must be installed first. Because the current USB driver has been built in
the XINJEConfig software, the USB driver will be installed automatically after the
XINJEConfig software is installed.
After installing the xinje config tool and usb driver, please switch to Xnet mode in the PLC
software:

(1) Open XDPPro software, click option/software serial port config

3 Xinje PLC Program Tool
Fle Edit Search View Online Configure | Option | Window Help

DSHXanEen ST L GE e
B ERE A A U it TETHCE (RN =T

= Software Serial Port Config
Default Unlack Psw Config

Other Project Config
o Ladder Color Config
Instruction Tool Help

(2) The window of "Communication Configuration” as shown in the picture below pops up,

Project 1 x PL
T Project
=[] pLCt

B coce
i .

-] Ladder

. =-[F Function Library

click ‘New’, and the configuration interface is as follows:

213

Commu?lion configuration

Edit Delete | Move-Up Move-Down

Hame Connection status Status Eelonging Description Connect Infa
USE—¥net-Default Hot conmected in use Global |Station number: 1, zerial port: COM3, baud r. ..
EtherHet-Ynet-Default Hot conmected Global |Search type: ethernet, Search mode: Device t...

EtherHet-Modbus—Tefault Hot conmected

Global |Modbus—TCF conmection, device IF address: 19...

(3) Select USB as the square port communication interface, XNET as the communication
protocol, and device type as the search method. After restarting the service, click OK.

Communication configuration X

Communication Fame: USE_inet 1

Cormection mode selection

Interface Type: USE

R
CommProtocol: ¥net ¥
Search Type: Device type ¥

Communication parameter configuration

Serial Port: auto zearch w

Device Type: B xE

ServerConfig Service 1n operation

. Auto—conmect on exit

Comm—Test 0K Cancel

214

Communication Hame: USE_finet 1

Cormection mode selection

Iy %netconfiguration services it
Lo Start Eeboot
Se [Stop YHET
Coar
Service 1n operation v 2. 076 (K Cancel

DEvice Type: B[xE

: Service 1n operation
ServerConfig P

B Muto—conmect on exit

Comm—Test 0K Cancel
(4) After the connection status is changed to ‘in use’, click OK:
Connection status Status Belonging Deseription
|| The conmected || in use || Global |Stati-:nn mmber: 1,
| Hot commected || || Global |Search type: futom

(5) If "Successfully connected to the local PLC" is displayed, the connection is successful.
Hint *

o successfully connected to the local PLC

Note:

(1) If it shows the error “find device timeout”, you can click "Restart Service" to try to
reconnect, or restart the programming software and PLC to reconnect. If you still can't
connect, you need to check whether the PLC is power on, whether the USB download

cable is connected properly, whether the USB driver and XINJEConfig software are
installed properly.

215

Communication configuration »

Communication Name: USE_inet_l

Commection mode selection

Interface Type: USE e
CommFrotocal: Knet e
Search Type: Device type [

Communication parameter conflguration

Serial Fort: auto search B

Device Type: ¥D [XE

ServerConfiz Service stopped

FIC_XD:4:find device timeout_de:Ze. .. Auto—conmect om exit

Comm—Test 0K Cancel]

Communication Hame: USE_inet 1

Commection mode selection

1p Xnetconfiguration services o4
Ca Start Reboot
i Stop] XHET
Cor
Service stopped w2 2. 076 0K Cancel

Device Type: B [XE

ServerConfig Service stopped

huto—conmect on exit

Comm—Test 0K Cancel

Ethernet port (RJ45)

RJ45 port is unique for Ethernet PLC, supports TCP/IP Ethernet communication, the port is
faster and more stable than USB communication, the data monitoring real-time ability is
better, program downloading and uploading is faster. The connection mode of Ethernet
communication itself has obvious advantages over RS485 and USB. In many situations of
PLC communication, users can communicate with any PLC on the spot through only one
switch.

In addition to its application in LAN, Ethernet also supports the remote search, monitoring
and operation of PLC, download functions, and communication with other TCP IP devices in
the network through the Internet.

216

RJ45 port can be configured in "PLC Config-Ethernet” of XINJE PLC programming software,
or through XINJEConfig tool. Refer to the relevant manual for details.

XG2 series PLC has two RJ45 ports, LAN1 and LAN2 respectively. The function of LAN1
port is the same as that of RJ45 port of XG1 series PLC. LAN2 port is used for EtherCAT
communication. EtherCAT (Ethernet control automation technology) is an open architecture
Fieldbus System Based on Ethernet. EtherCAT bus has faster speed, higher bandwidth
utilization and more flexible system structure than the traditional bus system. Refer to
EtherCAT bus control user manual for details.

6-1-2 Communication parameters

Communication Parameters

Station Modbus station number: 1~254
Baud Rate 300bps~9Mbps

Data Bit 56,7,8,9

Stop Bit 1,15,2

Parity Even, Odd, even, empty, mask

The default parameters: Station number is 1, baud rate is 19200bps, 8 data bits, 1 stop bit,
even parity.

There are many ways to set the parameters of PLC communication port:

There are two ways to set Modbus communication parameters: (1) setting parameters by
programming software. (2) setting parameters by XINJEConfig tool, refer to chapter 6-2-6 for
details.

Free format communication parameters can be set by programming software, refer to chapter
6-3-2 for details.

X-NET communication parameters can be set by Xinje Config tool. Refer to X-NET fieldbus
manual for details.

6-2 MODBUS communication

6-2-1 Function overview
XG1, XG2 series PLC support both Modbus master and Modbus slave.

Master mode: When PLC is set to be master, it can communicate with other slave devices
which have MODBUS-RTU or MODBUS-ASCII protocol via Modbus instructions; it also
can change data with other devices.

For example: Xinje XG1 series PLC can control inverter by Modbus.

Slave mode: When PLC is set to be slave, it can only response with other master devices.

217

Master and slave: In RS485 network, there can be one master and several slaves at one time
(see below diagram). The master station can read and write any slave station. Two slave
stations cannot communicate with each other. Master station should write program and read
or write one slave station; slave station has no program but only response the master
station.(Wiring: connect all 485+, connect all 485-)

Note:

1. For XG series PLC, RS485 only support half-duplex.

2. For XC series PLC, if master PLC send one data to slave PLC, and master PLC send data
again before slave PLC receiving the last one completely, slave PLC end data error may occur.
For XG series PLC, we solve this problem by adding waiting time before communication,
which means the slave PLC will receive the next data only after some time the last data
finished.

—
—
_—

6-2-2 Changing of Modbus instruction

Modbus instruction handling mode has changed in XG series PLC, users can write Modbus
instructions directly in program, the protocol station will queue up Modbus requests, which is
not the same task with communication; It means users can use one triggering condition to
trigger multiple Modbus instructions at the same time. PLC will queue up Modbus requests
according to protocol station, which will lead to communication error in XC series PLC.

MO
Y —

COLR K1 K500 K3 M1 K2 #

MCLW K1 K500 K3 M1 K2 }»

|1

REGW K1 K500 D1 K2 ’*

XC series(>)

218

MO
— —

COLR K1 K500 K3 M1 K2 }

MCLW K1 K500 K3 M1 K2 }

REGW K1 K500 D1 K2

|1

’,

XG series(V)

Note: XG series PLC sequence block has cancelled Modbus communication instructions,

which is replaced by the current Modbus instruction handling mode.

6-2-3 Modbus communication address

The soft component’s code in PLC corresponds with Modbus ID number, please see the
following table:
XG series PLC Modbus address and internal soft component table:

Modbus Modbus
Type | component Address number | address address

(Hex) (decimal)

M MO0~M20479 20480 0~4FFF 0~20479
X0~X77 (main body) 64 5000~503F | 20480~20543
X10000~X10077 (module 1) 64 5100~513F | 20736~20799
X10100~X10177 (module 2) 64 5140~517F | 20800~20863
X10200~X10277 (module 3) 64 5180~51BF | 20864~20927
X10300~X10377 (module 4) 64 51CO~51FF | 20928~20991
X10400~X10477 (module 5) 64 5200~523F | 20992~21055
X10500~X10577 (module 6) 64 5240~527F | 21056~21119
X10600~X10677 (module 7) 64 5280~52BF | 21120~21183
X X10700~X10777 (module 8) 64 52C0~52FF | 21184~21247
X11000~X11077 (module 9) 64 5300~533F | 21248~21311
X11100~X11177 (module 10) 64 5340~537F | 21312~21375
X11200~X11277 (module 11) 64 5380~53BF | 21376~21439
X11300~X11377 (module 12) 64 53C0~53FF | 21440~21503
Coil. bit X11400~X11477 (module 13) 64 5400~543F | 21504~21567
obje;:t X11500~X11577 (module 14) 64 5440~547F | 21568~21631
X11600~X11677 (module 15) 64 5480~54BF | 21632~21695
X11700~X11777 (module 16) 64 54C0~54FF | 21696~21759
X20000~X20077 (BD 1) 64 58D0~590F | 22736~22799
YO0~77 (main body) 64 6000~603F | 24576~24639
Y10000~Y10077 (module 1) 64 6100~613F | 24832~24895
Y10100~Y10177 (module 2) 64 6140~617F | 24896~24959
Y10200~Y 10277 (module 3) 64 6180~61BF | 24960~25023
Y10300~Y 10377 (module 4) 64 61C0~61FF | 25024~25087
v Y10400~Y 10477 (module 5) 64 6200~623F | 25088~25151
Y10500~Y10577 (module 6) 64 6240~627F | 25152~25215
Y10600~Y10677 (module 7) 64 6280~62BF | 25216~25279
Y10700~Y10777 (module 8) 64 62C0~62FF | 25280~25343
Y11000~Y11077 (module 9) 64 6300~633F | 25344~25407
Y11100~Y11177 (module 10) 64 6340~637F | 25408~25471
Y11200~Y11277 (module 11) 64 6380~63BF | 25472~25535

219

Modbus Modbus
Type | component Address number | address address

(Hex) (decimal)
Y11300~Y11377 (module 12) 64 63C0~63FF | 25536~25599
Y11400~Y 11477 (module 13) 64 6400~643F | 25600~25663
Y11500~Y 11577 (module 14) 64 6440~647F | 25664~25727
Y11600~Y11677 (module 15) 64 6480~64BF | 25728~25791
Y11700~Y11777 (module 16) 64 64C0~64FF | 25792~25855
Y20000~Y20077 (BD 1) 64 68D0~690F | 26832~26895
S S0~S7999 8000 | 7000~8F3F | 28672~36671
SM SM0~SM4095 4096 | 9000~9FFF | 36864~40959
T TO~T4095 4096 | AO00~AFFF | 40960~45055
C C0~C4095 4096 | BOOO~BFFF | 45056~49151
ET ETO~ET39 40 C000~C027 | 49152~49191
SEM SEM0~SEM127 128 C080~COFF | 49280~49407
HM™ HM0~HM6143 6144 | C100~D8FF | 49408~55551
HS™ HS0~HS999 1000 | D900~DCEF | 55552~56551
HT™! HT0~HT1023 1024 | E100~E4FF | 57600~58623
HC™ HCO0~HC1023 1024 | E500~E8FF | 58624~59647
HSC*! HSCO0~HSC39 40 E900~E927 | 59648~59687

D D0~D20479 20480 0~4FFF 0~20479
IDO~ID99 (main body) 100 5000~5063 | 20480~20579
ID10000~1D10099 (module 1) 100 5100~5163 | 20736~20835
ID10100~1D10199 (module 2) 100 5164~51C7 | 20836~20935
1D10200~1D10299 (module 3) 100 51C8~522B | 20936~21035
ID10300~1D10399 (module 4) 100 522C~528F | 21036~21135
ID10400~1D10499 (module 5) 100 5290~52F3 | 21136~21235
ID10500~1D10599 (module 6) 100 52F4~5357 | 21236~21335
ID10600~1D10699 (module 7) 100 5358~53BB | 21336~21435
D ID10700~1D10799 (module 8) 100 53BC~541F | 21436~21535
ID10800~1D10899 (module 9) 100 5420~5483 | 21536~21635
ID10900~1D10999 (module 10) 100 5484~54E7 | 21636~21735
ID11000~1D11099 (module 11) 100 54E8~554B | 21736~21835
ID11100~1D11199 (module 12) 100 554C~55AF | 21836~21935
Register ID11200~1D11299 (module 13) 100 55B0~5613 | 21936~22035
word ; ID11300~1D11399 (module 14) 100 5614~5677 | 22036~22135
object ID11400~1D11499 (module 15) 100 5678~56DB | 22136~22235
ID11500~1D11599 (module 16) 100 56DC~573F | 22236~22335
1D20000~1D20099 (BD 1) 100 58D0~5933 | 22736~22835
QD0~QD99 (main body) 100 6000~6063 | 24576~24675
QD10000~QD10099 (module 1) 100 6100~6163 | 24832~24931
QD10100~QD10199 (module 2) 100 6164~61C7 | 24932~25031
QD10200~QD10299 (module 3) 100 61C8~622B | 25032~25131
QD10300~QD10399 (module 4) 100 622C~628F | 25132~25231
QD10400~QD10499 (module 5) 100 6290~62F3 | 25232~25331
QD QD10500~QD10599 (module 6) 100 62F4~6357 | 25332~25431
QD10600~QD10699 (module 7) 100 6358~63BB | 25432~25531
QD10700~QD10799 (module 8) 100 63BC~641F | 25532~25631
QD10800~QD10899 (module 9) 100 6420~6483 | 25632~25731
QD10900~QD10999 (module 10) 100 6484~64E7 | 25732~25831
QD11000~QD11099 (module 11) 100 64E8~654B | 25832~25931
QD11100~QD11199 (module 12) 100 654C~65AF | 25932~26031

220

Modbus Modbus
Type | component Address number | address address
(Hex) (decimal)
QD11200~QD11299 (module 13) 100 65B0~6613 | 26032~26131
QD11300~QD11399 (module 14) 100 6614~6677 | 26132~26231
QD11400~QD11499 (module 15) 100 6678~66DB | 26232~26331
QD11500~QD11599 (module 16) 100 66DC~673F | 26332~26431
QD20000~QD20099 (BD 1) 100 68D0~6933 | 26832~26931
SD SD0~SD4095 4096 | 7000~7FFF | 28672~32767
TD TD0~TD4095 4096 | 8000~8FFF | 32768~36863
CD CD0~CD4095 4096 | 9000~9FFF | 36864~40959
ETD ETDO~ETD39 40 A000~A027 | 40960~40999
HD™! HDO~HD6143 6144 | A080~B87F | 41088~47231
HSD™! HSDO~HSD1023 1024 | B880~BCT7F | 47232~48255
HTD™! HTD0~HTD1023 1024 | BC80~CO7F | 48256~49279
HCD™ HCDO0~HCD1023 1024 | C080~C47F | 49280~50303
HSCD*! HSCDO~HSCD39 40 C480~C4A7 | 50304~50343
FD*2 FD0~FD8191 8192 | CACO~E4BF | 50368~58559
SFD™? SFD0~SFD4095 4096 | E4CO~FC2F | 58560~64559
FS*2 FSO0~FS47 48 FACO~FAEF | 62656~62911
Note:

1. the power down holding area is marked with ¥ 1, and the flash area is marked with 2.
2: the address in the above table is used when PLC is the lower computer and Modbus RTU
or MODBUS ASCII protocol is used for communication, the general upper computer is:

SCADA/HMI/PLC.

3: if the upper computer is PLC, program according to Modbus RTU or MODBUS ASCI|I

protocol.

4: if the upper computer is SCADA or HMI, there are two situations: the first one has the
Xinje driver, for example: Xinje HMI / Zijingiao SCADA.
The program can be written directly by using PLC internal soft components (YO / MO0); for
the second type, Modbus RTU or Modbus ASCI| is selected if there is no Xinje driver, and
then use the addresses in the table above to define the data variables.
5: input and output point is octal, please calculate corresponding input and output point
MODBUS address according to octal, for example: MODBUS corresponding to YO,

the address is H6000, the Modbus address corresponding to Y10 is H6008 (not H6010), and
the Modbus address corresponding to Y20 is H6010 (not H6020).
6: when the Modbus address exceeds 32767, it needs to be expressed in hexadecimal, and "0"
should be added before the address. For example: MODBUS of HDO is 41088 in decimal
(beyond 32767), and 41088 cannot be written into the software, so it needs to be expressed in
hexadecimal as HOAQ80.
7: Calculation of Modbus address of X and Y, taking X as an example, the calculation of
Modbus address of Y is the same as that of X.
X0: 20480 X10: 20480+8 X20: 20480+16 X30: 16384+24...
X10000: 20736 X10010: 20736+8 X10020: 20736+16...
X10200: 20800 X10210: 20800+8 X10220: 20800+16...

221

6-2-4 Modbus data format

Modbus transmission mode:

There are two transmission modes: RTU and ASCII; It defines serial transmission of bit
content in message domain; it decides how information to pack and decode; transmission
mode (and port parameters) of all devices in Modbus serial links should be the same.

Modbus-RTU data structure

1.RTU mod

Under Modbus RTU (remote terminal unit) mode, message has two 4-bit hexadecimal
characters in every 8-bit byte. This mode has very high data density, higher throughput rate

€.

than Modbus ASCII. Every message should be sent by continuous characters.
RTU mode frame check domain: cycle redundancy check (CRC).

RTU mode frame description:

Modbus Function data CRC
station code
2 byte
1 byte 1 byte 0~252 byte CRClow | CRC
high
Format:
START No input signal = 10ms
Address(station no.) Communication address: 8-bit binary
Function Function code: 8-bit binary
DATA(- 1) Data content:
DAT 20 N*8-bit data, N<8, max 8 bytes
CRC CHK Low CRC check code
CRC CHK High 1§-b!t CRC check code is consist of two 8-
bit binary

END No input signal = 10ms

2. Modbus address:

00H: All the Xinje XC series PLC broadcast

01H: Communicate with address 01H PLC.
OFH: Communicate with address 15H PLC.
10H: Communicate with address 16H PLC and so on. Up to 254(FEH).

slave stations don’t response.

3. Function and DATA:
Function Function Modbus instruction
code
01H Read coil COLR
02H Read input coil INPR(not support Xinje PLC)
03H Read register REGR
04H Read input register | INRR
05H Write coil CoLwW
06H Write register REGW
10H Write multi-register | MRGW
OFH Write multi-coil MCLW

222

(1) Take 06H function code as example (single register write), and introduce data format.
E.g.: upper computer write data to PLC H0002 (D2).

RTU mode:

Asking format Response format

ID 01H ID 01H

Function code 06H Function code 06H

Register ID 00H Register ID 00H
02H 02H

Data content 13H Data contents 13H
88H 88H

CRC CHECK High | 25H CRC CHECK High 25H

CRC CHECK Low | 5CH CRC CHECK Low 5CH

Explanation:

1. Address is PLC station no.

2. Function code is Modbus-RTU protocol read/write code.

3. Register address is the PLC modbus address, please see chapter 6-2-3.

4. Data content is the value in D2.

5. CRC CHECK High / CRC CHECK Low is high and low bit of CRC check value.

If 2 pieces of Xinje XD3 series PLC communicate with the other one, write K5000 to D2.
MO
—N | REGW K1 HO0002 K5000 K2 }{

MO is trigger condition (Rising edge). If communication fails, the instruction will try twice. If
the third time communication fails, then communication ends.
The relationship between REGW and Modbus RTU protocol (other instructions are the same)

REGW Function code 06H
K1 Station no.

HO0002 Modbus address
K5000 Data contents 1388H
K2 PLC serial port

The complete communication datum are: 01H 06H 00H 02H 13H 88H (system take CRC
checking automatically)

If monitor the serial port2 data by serial port debugging tool, the datum are: 01 06 00 02 13
88 25 5C

Note: The instruction doesn’t distinguish decimal, hex, binary, octal etc. For example,
B10000, K16 and H10 are the same value, so the following instructions are the same.
REGW K1 B111110100 D1 K2

REGW K1 K500 D1 K2

REGW K1 Hi1F4 D1 K2

(2) Function code 01H/02H: read coil/read input coil
Eg. Read coil address 6000H (Y0). At this time, YO and Y1 are ON.

RTU mode:
Asking format Response format
Address | 01H Address | 01H

223

Function code 01H/02H | Function code 01H/02H
Coil address 60H Byte number 01H

00H
Coil number 00H Data contents 03H

02H
CRC CHECK A3H CRC CHECK Low | 11H
Low
CRC CHECK CBH CRC CHECK High | 89H
High

As the status of YO and Y1 is ON, the data contents are 03H (0000 0011).

(3)Function code 03H: read register

Eg. Read two register starting from03E8H (D1000, D1001).

RTU mode:
Asking format Response format
Address 01H Address 01H
Function code 03H Function code 03H
Register address 03H Byte number 04H
E8H
Register number 00H Data contents 12H
2EH
02H 04H
E8H
CRC CHECK 44H CRC CHECK Low | 9DH
Low
CRC CHECK 7BH CRC CHECK High | CCH
High

(4)Function code 05H: write single coil

Eg. Set on the coil address 6000H (YO0).

At this time, the data read fromD1000 and D1001 are 122EH (4654) and 04E8H (1256).

RTU mode:
Asking format Response format
Address 01H Address 01H
Function code 05H Function code 05H
Coil address 60H Coil address 60H
00H 00H
Data contents FFH Data contents FFH
(low byte is before | 00H 00H
high byte)
CRC CHECK 92H CRC CHECK Low | 92H
Low
CRC CHECK 3AH CRC CHECK High | 3AH
High

Note: when writing single coil, ON is 00FFH, OFF is 0000H; the low byte is before high
byte for the data contents.

(5)Function codeOFH: write multiple coils
Eg. Write 16 coils start from address 6000H (YO).

224

RTU mode:

Asking format Response format

Address 01H Address 01H

Function code OFH Function code OFH

Coil address 60H Coil address 60H
00H 00H

Coil number 00H Coilnumber 00H
10H 10H

Byte number 02H - -

Data contents 03H

(low byte is before | 01H

high byte)

CRC CHECK 43H CRC CHECK Low 4AH

Low

CRC CHECK 16H CRC CHECK High 07H

High

The data contents are 0103H, the binary format is 0000 0001 0000 0011, write in
corresponding Y17~YO0, so YO, Y1, Y10 are set ON.
Note: when writing the data contents, the low byte is before the high byte.

(6)Function code 10H: write multiple registers
Eg. Write 3 registers starting from address 0000H (DO).

RTU mode:
Asking format Response format
Address 01H Address 01H
Function code 10H Function code 10H
Register address 00H Register address 00H
00H 00H
Register number 00H Register number 00H
03H 03H
Byte number 06H - -
Data contents 00H
01H
00H
02H
00H
03H
CRC CHECK 3AH | CRC CHECK Low 3AH
Low
CRC CHECK 81H CRC CHECK High 81H
High

After executing, the value in DO, D1, D2 are 1, 2, 3.

Note: byte number = register number * 2.
Modbus-ASCII data structure
1. ASCII mode:
For Modbus ASCII(American Standard Code for Information Interchange)mode in serial
links, every 8-bit byte is sent as two ASCII characters. When communication links and
devices do not fit RTU mode timing monitor, we usually use the ASCII mode.
Note: One byte needs two characters, so ASCII mode has lower inefficiency than RTU mode.

225

E.g.: Byte 0X5B will be encoded as two characters: 0x35 and 0x42(ASCII code 0x35 ="5",
0x42 ="B").

ASCII mode frame check domain: Longitudinal Redundancy Checking (LRC)

ASCII mode frame description:

Start mark | Modbus no. | Function code | data LRC End mark
1 character 2 characters | 2 characters 0~252%2 2 characters 2 characters
0x3A characters 0x0D | 0x0A
Format:

STX (3AH) Start mark=3AH

Address code high bit Communication position(no):

Address code low bit Consist of 2 ASCII codes

Function code high bit Function code(command):

Function code low bit Consist of 2 ASCII codes

Instruction start 1D

Instruction start 1D Command start bit:

Instruction start ID Consist of 4 ASCII codes

Instruction start ID

Data length

Data length Length from start to end:

Data length Consist of 4 ASCII codes

Data length

LRC check high bit LRC check code:

LRC check low bit Consist of 2 ASCII codes

END high bit End mark:

END low bit END Hi=CR(0DH), END Lo=CR(0AH)

2. Communication address:

00H: All Xinje XC series PLC broadcast—— slave stations do not response.
01H: Communicate with address 01H PLC.

OFH: Communicate with address 15H PLC.

10H: Communicate with address 16H PLC.

And so on, up to 254(FEH).

3. Function and DATA:

Function | Function Corresponding modbus
code
01H Read coil COLR
02H Read input coil INRR
03H Read register REGR
04H Read input register INRR
05H Write single coil COLW
06H Write single register REGW
10H Write multiple MRGW
registers
OFH Write multiple coils MCLW

226

Take 06H function code(write single register)as example, and introduce data format(other
functions are similar to this):
E.g.: upper computer write data K5000(H1388) to PLC H0002 (D2).

ASCII mode:
Start mark 3AH
ID 30H
31H
Function code 30H
36H
Register 1D high byte 30H
30H
Register ID low byte 30H
32H
Data content high byte 31H
33H
Data content low byte 38H
38H
LRC 35H
43H
End mark ODH
0AH
Description:

1. address is PLC station number.

2. Function code is Modbus-ASCII protocol read/write code.

3. Register ID is the PLC modbus communication ID, please see chapter 7-2-2.

4. Data content is the value in D2.

5. LRC CHECK Low / CRC CHECK High is low and high bit of CRC check value.

If two pieces of Xinje XD3 PLC communicate with each other, write K5000 to D2.

MO
—N | REGW K1 H0002 K5000 KZ}{

MO is trigger condition (rising edge). When Xinje PLC communicates by Modbus, if
communication fails, the instruction will try twice. If the third time communication fails, then
communication ends.

The relationship between REGW and ASCII protocol (other instructions are similar to this):

REGW Function code 06H

K1 Station number

HO0002 Modbus ID .

KE000 Data content is 1388H Complete data string: 3AH 30H
K2 PLC communication serial port 31H 30H 36H 30H 30H 30H

32H 31H 33H 38H 38H 35H 43H
(system take CRC checking automatically)
If monitor the serial port2 by serial port debugging tool, the datum are: 3AH 30H 31H 30H
36H 30H 30H 30H 32H 31H 33H 38H 38H 35H 43H ODH OAH
Note: The data does not distinguish decimal, binary, hexadecimal etc. For example, B10000,

K16 and H10 are the same value, so the following instructions are the same.
227

REGW K1 B111110100 D1 K2
REGW K1 K500 D1 K2
REGW K1 Hi1F4 D1 K2

6-2-5 Communication Instructions

Modbus instructions include coil read/write, register read/write; below will introduce the
details.

Instructions in details:

The operand definition in the instruction:

1. Remote communication station and serial port number.

E.g.: one PLC connects 3 inverters. PLC needs to write and read the parameters of inverter.
The inverter station number is 1.2 and 3. So the remote communication humber is 1.2 and 3.

2. Remote register/coil start ID number:

Assign remote coil/register number: the start coil/register ID of PLC read and write, it is
normally used with ‘assigned coil/register number’.

E.g.: PLC read Xinje inverter’s output frequency (H2103), output current(H2104), bus
voltage(H2105), then remote register/coil start ID is H2103, assigned coil number is K3.

3. Local receipt/send coil/register address: Coil/register in PLC used to exchange data with
lower computer.
E.g.: write coil MO: write MO status to assigned address in lower computer

Write register DO: write DO value to assigned address

Read coil M1: read content in lower computer assigned address to M1

Read register D1: read content in lower computer assigned address to D1

4. communication condition:

The preconditions of Modbus communication can be normal open/closed coil and
rising/falling edge. When the open/close coil triggers, Modbus instructions will always be
executed. When the communication between multiple slave stations or the traffic is large,
communication delay may occur. The oscillating coil can be used as triggering condition.
When the rising/falling edge triggers, Modbus instructions will only be executed once, and
only when the next rising/falling edge comes, Modbus instructions will be executed again.

ICoil Read [COLR]
1) Summary
Read the specified station’s coil status to the local device;

Coil read [COLR]

16 bits COLR 32 bits -
instruction instruction

Execution Normally ON/OFF coil Suitable XG1, XG2
condition models

Hardware - Software -
requirement Requirement

228

2) Operands

Operands | Function Type

S1 Specify the remote communication station no. 16 bits, BIN
S2 Specify the remote coil start address 16 bits, BIN
S3 Specify the coil quantity 16 bits, BIN
D1 Specify the local coil start address bits

D2 Specify the serial port no. 16 bits, BIN

3) Suitable soft components

Operands Word soft elements Bit soft elements
System Constant | Module System
DF| T|C | D|D|D|D KH 1| Q| X|Y|M|S|T|C| Dn
DID|ID|X|Y | M]|S D| D m
S1 o| o o | o °
S2 oo o | o °
S3 oo o | o °
D1 AR R
D2 K

Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM. M includes M, HM, SM; S includes S and HS; T includes T and
HT; C includes C and HC.

Function

y & @ ® ® @
—m—{COLR‘Kl‘KSOO‘K3‘M1‘K2‘

e Read the coil, Modbus function code 01H.

e Serial port: K1~K3. K0: K1: COM1, K2: COM2, K3: COM3.

e Operands S3: K1~K2000, the max coil quantity is 2000.

e When X0 is ON, COLR instruction is executed. When the instruction starts to execute,
the Modbus read and write flag SM160 (serial port 2) is set on; when the execution is
completed, SM160 (serial port 2) is set OFF. If a communication error occurs and the
number of resend is set, it will be automatically resend. Users can check the relevant
registers to determine the cause of the error. The execution result of Modbus read and
write instructions of serial port 2 is in SD160.

229

|Input coil read [INPR]

1)Summary

Read the specified station’s input coil status to local device.

Input coil read [INPR]

16 bits INPR 32 bits -
instruction instruction
Execution Normally ON/OFF, rising Suitable XG1, XG2
condition edge models
Hardware - Software -
reguirement reguirement

2)Operands
Operands | Function Type
S1 Specify remote communication station no. 16 bits, BIN
S2 Specify remote coil start address number 16 bits, BIN
S3 Specify coil number 16 bits, BIN
D1 Specify start address number of local receipt bit

coils

D2 Specify serial port number 16 bits, BIN

3)Suitable soft components

Operands Word soft elements Bit soft elements
System Constant | Module System
DIF|T|C|D|D|D|D| KH I Q[X|Y|M|S|T|C|Dnm
DIDID|X|Y|M|S D| D
S1 oo o | o °
S2 oo o | o °
S3 oo o | o °
D1 oo o |0 |00
D2 K

Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM; S includes S
and HS; T includes T and HT; C includes C and HC.

Function

G G vy (@

o (s1)
4m—{ INPR ‘ K1 ‘KSOO‘ K3 ‘ M1 ‘ KZ‘

Read input coil, Modbus function code is 02H.
Serial port: K1~K3. K0: K1: COM1, K2: COM2, K3: COM3.
Operand S3: K1~K2000, max input coil number is 2000.
When X0 is ON, INPR instruction is executed, Modbus read write flag SM160(serial

port2) is set ON, SM160 is set OFF when the execution is completed. If a
communication error occurs and the number of resend is set, it will be automatically

230

resend. Users can check the relevant registers to determine the cause of the error. The
execution result of Modbus read and write instructions of serial port 2 is in SD160.
e This instruction cannot read XINJE PLC input coil.

ISingle Coil Write [COLW]

1)Summary

Write local device specified coil to remote station no’s coil.
Single Coil write [COLW]
16 bits coLw 32 bits -
instruction instruction
Execution Normally ON/OFF, edge Suitable XG1, XG2
Condition triggering Models
Hardware - Software -
Requirement Requirement

2)Operands
Operands | Function Type
D1 Specify remote communication station number 16 bits, BIN
D2 Specify remote coil start address 16 bits, BIN
S1 Specify start address of local coil bit
S2 Specify serial port number 16 bits, BIN

3)Suitable soft components

Operan Word soft elements Bit soft elements
ds System Consta | Module System
nt
Dl{F|T|C|D|D|D|D| KH 1| Q| X|Y|M|S|T|C| Dn
DI DD X|Y]|M]|S D| D m
D1 o o ° ° °
D2 o o o | o Y
S1 o oo 0|00
S2 K

Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM; S includes S
and HS; T includes T and HT; C includes C and HC.

Function

B @ @ @ @
——— cotw | K1 [kso0 | M1 | K2 |

e Write single coil, Modbus function code is 05H.
e Serial port: K1~K3. K0: K1: COM1, K2: COM2, K3: COM3.
o When X0 is ON, COLW instruction is executed, Modbus read write flag

231

SM160(serial port2) is set ON, SM160 is set OFF when the execution is completed. If
a communication error occurs and the number of resend is set, it will be automatically
resend. Users can check the relevant registers to determine the cause of the error. The
execution result of Modbus read and write instructions of serial port 2 is in SD160.

IMultiple coils write [MCLW]

1)Summary

Write local device multiple coils to remote station no’s coil.

Multiple coils write [MCLW]
16 bits MCLW 32 bits -
instruction instruction
Execution Normally ON/OFF, edge Suitable XG1, XG2
Condition triggering models
Hardware - Software -
Requirement Requirement

2)Operands
Operands | Function Type
D1 Specify remote communication station number 16 bits, BIN
D2 Specify remote coil start address 16 bits, BIN
D3 Specify coil number 16 bits, BIN
S1 Specify start address of local coils bit
S2 Specify serial port number 16 bits, BIN

3)Suitable soft components

Operands Word soft elements Bit soft elements
System Consta | Module System
nt
DIF| T|C|D|D|D|D KH 1 Q[X|Y| M|S|T|C| Dn
DID|ID|X|Y]|M]|S D| D m
S1 e/ o| o | o °
S2 oo | o | o °
S3 oo | o | o °
D1 oo o 000
D2 K

Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM; S includes S
and HS; T includes T and HT; C includes C and HC.

Function

o G (3 (& (=)

X0
ﬁw—{MCLW‘ K1 ‘KSOO‘ K3 ‘ M1 ‘ K2 ‘

232

o Write multiple coils, Modbus function code is OFH.

e Serial port: K1~K3. K0: K1: COM1, K2: COM2, K3: COM3.

e Operand D3: max coil number is 1976.

e When X0 is ON, MCLW instruction is executed, Modbus read write flag
SM160(serial port2) is set ON, SM160 is set OFF when the execution is completed. If
a communication error occurs and the number of resend is set, it will be automatically
resend. Users can check the relevant registers to determine the cause of the error. The
execution result of Modbus read and write instructions of serial port 2 is in SD160.

|Register read [REGR]
1)Summary
Read remote station no’s register to local device.

Register read[REGR]

16 bits REGR 32 bits -

instruction instruction

Execution Normally ON/OFF, edge Suitable XG1, XG2

Condition triggering models

Hardware - Software -

Requirement Requirement
2)Operands

Operands | Function Type

S1 Specify remote communication station number 16 bits, BIN

S2 Specify remote register start address 16 bits, BIN

S3 Specify register number 16 bits, BIN

D1 Specify start address of local register 16 bits, BIN

D2 Specify serial port number 16 bits, BIN
3)Suitable soft components
Operan Word soft elements Bit soft elements
ds System Consta | Module System

nt
DIF| T|C| D/ D/ D|/D| KH |I|Q|X|Y| M|S|IT|C| Dn
DIDID|[X|Y|M]|S D| D m

S1 ol o | o | @ °
S2 [] [] [] °
S3 o o | o | o °
D1 °
D2 K

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M,HM,SM; Sincludes SHS; T
includes T,HT; C includes C, HC.

Function

233

REGR‘ K1 ‘KSOO‘ K3 ‘ D1 ‘ KZ‘

g o @ @ G @

Read register, Modbus function code is 03H.

Serial port: K1~K3. K0: K1: COM1, K2: COM2, K3: COM3.

Operand S3: max register number is 125.

When X0 is ON, REGR instruction is executed, Modbus read write flag SM160(serial
port2) is set ON, SM160 is set OFF when the execution is completed. If a
communication error occurs and the number of resend is set, it will be automatically
resend. Users can check the relevant registers to determine the cause of the error. The
execution result of Modbus read and write instructions of serial port 2 is in SD160.

|Input register read [INRR]

1)Summary
Read remote station no’s input register to local device.

Input register read [INRR]
16 bits INRR 32 bits -
instruction instruction
Execution Normally ON/OFF, edge Suitable XG1, XG2
Condition triggering models
Hardware - Software -
Requirement Requirement

2)Operands
Operands | Function Type
S1 Specify remote communication station number 16 bits, BIN
S2 Specify remote register start address 16 bits, BIN
S3 Specify register number 16 bits, BIN
D1 Specify start address of local register 16 bits, BIN
D2 Specify serial port number 16 its, BIN

3)Suitable soft components

Operands Word soft elements Bit soft elements
System Consta | Module System
nt
DIFI T|C|D|D| D|D KH I Q[X|Y|M|S|T|C| Dn
DID|D|X|Y | M]|S D| D m
S1 o o/l o | o °
S2 ([] [J [) Y
S3 IR °
D1 °
D2 K

234

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M,HM,SM; S includes S;HS; T
includes T,HT; C includes C, HC.

Function

- ®®® ® ®
ﬁw—{lNRR‘Kl‘Ksoo‘Ks‘Dl‘Kz‘

e Read input register, Modbus function code is 04H.

e Serial port: K1~K3. K0: K1: COM1, K2: COM2, K3: COM3.

e Operand S3: max register number is 125.

¢ When X0 is ON, INRR instruction is executed, Modbus read write flag SM160(serial
port2) is set ON, SM160 is set OFF when the execution is completed. If a
communication error occurs and the number of resend is set, it will be automatically
resend. Users can check the relevant registers to determine the cause of the error. The
execution result of Modbus read and write instructions of serial port 2 is in SD160.

|Sing|e Register write [REGW]
1)summary
Write local device register to specified remote station no’s register.

Register write[REGW)]
16 bits REGW 32 bits -
instruction instruction
Execution Normally ON/OFF, edge Suitable XG1, XG2
Condition triggering models
Hardware - Software -
Requirement Requirement

2)Operands
Operands | Function Type
D1 Specify remote communication station number 16 bits, BIN
D2 Specify remote register start address 16 bits, BIN
S1 Specify start address of local register 16 bits, BIN
S2 Specify serial port number 16 bits, BIN

3)Suitable soft components

Operands Word soft elements Bit soft elements
System Consta | Module System
nt
DIF| T| C | D D| D KMH I Q| X|Y|M|S|T|C| Dn
DID| D] X M| S D| D m
D1 oo | o | o °
D2 oo | o | o °
S1 °
S2 K

235

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M,HM,SM; Sincludes S HS; T
includes T,HT; C includes C, HC.

Function

. ® @ @ @
—m—{REGW‘ K1 ‘KSOO‘ D1 \ K2‘

o \Write register, Modbus function code is 06H.

e Serial port: K1~K3. K0: K1: COM1, K2: COM2, K3: COM3.

e When X0 is ON, REGW instruction is executed, Modbus read write flag
SM160(serial port2) is set ON, SM160 is set OFF when the execution is completed. If
a communication error occurs and the number of resend is set, it will be automatically
resend. Users can check the relevant registers to determine the cause of the error. The
execution result of Modbus read and write instructions of serial port 2 is in SD160.

|Mu|tip|e registers write [MRGW]
1)Summary
Write local device multiple registers to remote station no’s registers.

Multi-register write [MRGW)]

16 bits MRGW 32 bits -

instruction instruction

Execution Normally ON/OFF, edge Suitable XG1, XG2

Condition triggering models

Hardware - Software -

Requirement Requirement
2)Operands

Operands | Function Type

D1 Specify remote communication station number 16 bits, BIN

D2 Specify remote register start address 16 bits, BIN

D3 Specify register number 16 bits, BIN

S1 Specify start address of local registers 16 bits, BIN

S2 Specify serial port number 16 bits, BIN
3)Suitable soft components
Operands Word soft elements Bit soft elements

System Consta | Module System
nt
DIF| T|C | D|D|D|D| KH |I|Q|X|Y M|S|T|C| Dn
DIDID|X|Y|M]|S D| D m

D1 ol o | o ° °
D2 oo | o | @ °
D3 oo | o | o °
S1 °
S2 K

236

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M,HM,SM; Sincludes S HS; T
includes T,HT; C includes C, HC.

Function

y ® @ @ ® ®
—m—{MRGW‘ K1 ‘KSOO‘ K3 ‘ D1 ‘ KZ‘

o Write multiple registers, Modbus function code is 10H.

e Serial port: K1~K3. K0: K1: COM1, K2: COM2, K3: COM3.

e Operand D3: the max register number is 123.

e When X0 is ON, MRGW instruction is executed, Modbus read write flag
SM160(serial port2) is set ON, SM160 is set OFF when the execution is completed. If
a communication error occurs and the number of resend is set, it will be automatically
resend. Users can check the relevant registers to determine the cause of the error. The
execution result of Modbus read and write instructions of serial port 2 is in SD160.

6-2-6 Modbus serial port configuration

There are two ways to set Modbus communication parameters: 1. set parameters by
programming software; 2. set parameters by XINJEConfig tool.

1. Set parameters by programming software
When using programming software to configure the parameters of PLC serial port, Xnet
communication mode or Modbus communication mode (i.e. RS232 port) can be used for
configuration.
(1) Use the USB download cable to connect the PLC with the computer. Here the USB
download cable is the HMI download cable, as shown below, the software must
switch to XNet communication mode.

(2) Open the programming software, click configure/PLC com port settings. It will show
below figure:

237

| Xinje PLC Program Toal

File Edit Search \View

&R X ®

E3F =3 HHE AR H

Inz =Inz Del =Del F&

roiect

Online | Configure | Option Window Help
oy |.| PLC Comm Port Settings |—| 7T IAN
ﬁ'g - — , P < e
ecurity Settings
—M_ —|T Expansion Module Settings B | >|< Er
F& sF . F12 k12
Operand Data List

(3) Click add, it will show two modes, modbus mode and free mode, please select modbus
mode, it will show below figure.

PLCT - Serial Port Set

=-{_4 PLC Config
I/

Paszword

la ED
----- ' 4GBOX
[EtherCAT

Add ~| Remove
| Modbus

Free

=-[_d PLC Config

----- 1/0

fied] Password

(::: PLC Serial Po:
----- lE‘ ethernet

Read From PLC Write To PLC

Modbusz Communication Params

Add -~ Remove
lcom |

Comport: CIOmi w

Bandrate: 19Z00bg

e

Databits: g

e

Checkbits: Even

Stopbits: 1

e

Frame a a
Timelut{ms) z

Read From PLC Write To PLC

Port No.: It refers PLC COM port.
The baud rate, data bit, parity bit, stop bit should be same to the communication device.
Station number: if the PLC is master, the station no. is defaulted 1, if the PLC is slave, it

needs to set different station no.

Two communication modes: RTU, ASCII.
Send delay time: Waiting time before PLC sends data. In the original XC series PLC, if the
master PLC communicates with the slave PLC, the master PLC sends data to the slave PLC.
If the master PLC sends data to the slave PLC after the first time, and the slave PLC has not
yet had time to receive the data, then the master PLC sends data to the slave PLC again,
which easily leads to the error of the slave PLC; In XG series PLC, it has send delay to solve
the problem. That is, after receiving data from the slave station, it must delay a certain time to
receive the next communication data, so as not to cause the above problems.

Response timeout (ms): it refers to the time when the PLC can not receive the response after
sending the request andwait for sending again.

238

Mode:

Recponze
timeout (ms):

Station Hum: 1 =

ETU

Send Delayr
Time(ms): 3

300

Retry Times: 3

notice Config effictive need to reboot FLC

YHET iz configured by the configwration tool

Cancel

Retry times: It refers to the number of times that the PLC can not receive the reply, and each
reply needs a reply timeout time.

(4) After setting, click write to PLC, then cut off the PLC power supply and power on
again to make the settings effective.

2. Set the parameters by using XINJEConfig tool

Xinje config tool configures through USB port, the version please use V1.6.343 and up.

(1) Use the USB download cable to connect the PLC with the computer. Here the USB
download cable is the HMI download cable, as shown below.

(2) Open xinjeconfig tool, click PLC
—E Welcome to use config tool — %

File(Fl Tool(T) Environment(E}] Help(H)

& PC @ PLC M TouchWin @ 4GBox
@ WBox @ ABox @ COBox
On line

(3) The Linkport please select the serial port which used by USB cable, the protocol please
choose Xnet, then click Find device. If the communication between PLC and computer is
abnormal, corresponding error prompt will appear. Restart X-NET service and try again.
If it still fails, please check according to the following possibilities.

The possibility of error reporting is:

e USB cable driver is not installed correctly.

e The port is not scanned at the PC end.

e The communication between PLC and PC fails. Check whether the PLC
communication port configuration and PLC status are normal.

239

=% PLCLinkForm — s
FindDevice pddrlink

[] Find with ID

Device I0: - - - -

Find device

(4) It will show below window after clicking Find device.

MODBUS

Comport Mo I

Station|D
BaudRate

ChooseMet
() ¥_Met
(@ Modbus DatabBits
Free Parity
PC StopBits

ChoosePHY RS232 Reply Time
Retry Times

ReadCorfig | | WiteCorfig SendDelay

Mote Corfigration wil take effect @ RTU (3 ASCIl
after the power is re-up

Serial port: K1~K3. K1: COM1, K2: COM2, K3: COMS3.
Here, we can set the communication mode and parameters of each communication port.

(5) When the com port parameters setting is completed, click writeconfig. It will show “write
configuration success” message.

firite configration success!

(6) Close XINJEConfig tool, cut the PLC power and power on again to make the settings
effective.

240

6-2-7 Modbus Communication application
485 wiring methods

A twisted-pair cable A
h::\\::‘~::‘\h:‘\;:‘\::‘\::‘\h:‘\;:‘\::‘\h:‘\~::\~::‘\::‘\h:‘\::\

B B
Connect all A terminals, connect all B terminals. A is RS485+, B is RS485-,

Application: One xinje XG1 series PLC controls 3 XC series PLCs, slave PLCs follow the
master’s action. (Master PLC YO0 ON, then slave PLC Y0 ON; Master PLC Y0 OFF, then
slave PLC Y0 OFF) Precondition: on-off of YO makes communication have enough time to
react. Also three slave PLCs can be not that synchronous (not fully synchronous).

Method 1 usual program

YO
—N | COLW K1 H4800 YO K2 |——

YO — COLW K2 H4800 YO K2 [——
4
| COLW K3 H4800 YO K2 |

The program takes serial port 2 as example, so corresponding communication flag is the serial
port 2’s. About other serial port, please refer to appendix 1. Serial port, please refer to
appendix 1.

Method 2 use broadcasting function:

PLC1

‘ [COLW K0 H4800 YO K2 |-
YOJ

Broadcast station is 0, all the slaves will response but not reply.
Broadcast cannot read.

When master YO status changes, it broadcasts the status to all the slaves. The synchronization
of three PLCs is better than method 1.

6-2-8 Application
Example 1:

Following are the programs for reading and writing Modbus communication between 1
master station and 3 slave stations.

Program operation:
(1) Write master PLC YO~Y11 status to slave PLC 2 YO~Y11

241

(2) Read slave PLC 2 Y0~Y11 to master PLC M10~M19

(3) Write master PLC D10~D19 to slave PLC 2 D10~D19
(4) Read slave PLC 2 D10~D19 to master PLC D20~D29
(5) Soasslave PLC 3and 4

The following is a comparison of XC and XG series Modbus-RTU communication programs
for reference. The communication programs in XC series are as follows:

M8002 i
iy } MOV K2 D100 # /Isend station no.2 to D100,
D10?>K5 execute the process SO
X0 S0
— (S)
S0 MO
- (S) /Iset ON Y0~Y11 of master
{ MOV HAO DYO F station, write the master status to
MO Y0~Y11 of slave PLC 2, 3, 4.
—— MCLW D100 K24576 K10 YO K2 F Enter process S1 when the
M;O M?ﬂmg (Ssl) communication succeeded.
MO
(R)
s1 M1
— i (S) /lread the YO~Y11 of slave PLC 2,
M1
—H—{ COLR D100 K24576 K10 M10 K2 # 3, 4 to master PLC M10~M19.
M1 M8138 82 Reset master PLC Y0~Y11 and
i L (S) enter process S2 after the
('\él) communication is successful.
-~ Mov ko DYO |
%2 MoV KL D16 Ko # /lwrite 1 to master PLC D10~D19,
| | = write the master PLC D10~D19 to
2 (s) D10~D19 of slave PLC 2, 3, 4.
| MRGW D100 K10 K10 D10 K2 |-{ Enter process S3 when the
M2 M8138 S3 communication is successful.
— i (S)
M2
(R)

242

s3 M3
i (S)
M3
—H—{ REGR D100 K10 K10 D20 K2 k
M3 M8138 |
- i | FMOV KO D10 K10 F
—{ INC D100 P
S0
(S)
M3
(R

/lread the D10~D19 of slave PLC
2, 3, 4 to master PLC D20~D29,
reset D10~D19 after the
communication is successful, then
the station no. is added 1, process
SO0 is executed, cycle.

Modbus-RTU instruction processing mode has changed. Users can write Modbus-RTU
instructions directly in user programs. Protocol stack will queue Modbus-RTU
communication requests. Communication is another task. In the main program, users can
write multiple Modbus-RTU communication instructions together and trigger them at the
same time through the same triggering condition. PLC will trigger these communications.
Instructions are queued according to the protocol station by Modbus-RTU, which will not
cause communication errors when multiple communication instructions are executed at the

same time as the original XC series PLC.

XG series program:

243

M200

—

M201
— I

\
| MOV H3FF DYO %

4{ FMOV K1 D10 K10 %

\
| MOV HO DYO %

MO

4{ FMOV KO0 D10 K10 %

} MCLW K2 K24576 K10 YO K2 %

—{ REGR K2 K10 K10 D20 K2 #
4{ MCLW K3 K24576 K10 YO K2 #

—{ COLR K3 K24576 K10 M20 K2 %

—{ MRGW K3 K10 K10 D10 K2 %
4{ REGR K3 K10 K10 D30 K2 %

—{ MCLW K4 K24576 K10 YO K2 %

4‘ REGR K4 K10 K10 D40 K2 #

6-3 Free communication

6-3-1 Free communication mode

//at the rising edge of M200, set
ON the master PLC Y0~Y11,
D10~D19 are set to 1, at the
rising edge of M201, set OFF
YO0~Y11 of master PLC, reset
D10~D19.

[Iwrite the YO~Y11 of master
PLC to YO~Y11 of slave PLC
2, read the YO~Y11 of slave
PLC 2 to M10~M19 of master
PLC. Write the D10~D19 of
master PLC to D10~D19 of
slave PLC 2. Read the
D20~D29 of slave PLC 2 to
D20~D29 of master PLC.

Free format communication is data transmission in the form of data blocks, limited by the
PLC cache, the maximum amount of data sent each time is 256 bytes.

The so-called free communication, i.e. custom protocol communication, now many intelligent
devices on the market support RS232 or RS485 communication, but the protocols used by
various products are different, such as: Xinje PLC uses standard Modbus-RTU protocol, some
temperature controller manufacturers use custom protocols; if using Xinje PLC to
communicate with temperature controller, it is necessary to use free communication to send
data in full accordance with the protocol of the instrument manufacturer, so as to

communicate.

Prerequisites for free communication:

244

PortO(RS232), Port1(RS232), Port2(RS485) or Port2-RS232(RS232) or Port2-
RS485(RS485), Port3(left extension port), Port4(upper extension port 1), Port5(upper
extension port 2) all support free communication. As the free communication needs to
change the communication parameters, portl is not recommended.

Baud rate: 300bps~3Mbps, 4.5Mbps~9Mbps (special model supported)

The data format must be the same as the lower device settings. There are several
options as follows:

Data bit: 5 bits (special model supported), 6 bits (special model supported), 7 bits, 8
bits, 9 bits.

Parity bit: none, odd parity, even parity, empty, mask

Stop bit: 1 bit, 1.5 bit, 2 bits

Starter: 1 byte, terminator: 1 byte

Users can set a start/termination character. After setting the start/termination character,
PLC automatically adds the start/termination character when sending data, and
automatically removes the start/termination character when receiving data.

In fact, the initiator and terminator can be regarded as the data frame head and end in
the protocol. Therefore, if the lower device communication has start and termination
character, it can be set in the software or written in the protocol.

Communication mode: 8 bits, 16 bits

When 8-bit buffer is selected for communication, the high bytes of registers are
invalid. PLC only uses the low bytes of registers to send and receive data.

When 16-bit buffer is selected for communication, the PLC will send all the data of
the register, and send low-byte data first, then high-byte data.

When it is necessary to transfer low bytes and high bytes of one 16-bit register to
another 16-bit register, 16-bit buffers must be selected for communication, and the
number of communication bytes is 2. When the value stored in a 16-bit register
occupies only low bytes, we can choose 8-bit buffer to communicate. The number of
communication bytes is 1. Usually when we communicate, the data will not exceed
the low byte of a register (HFF), so we only need to use the default 8-bit buffer in the
software to communicate.

Timeout: frame timeout (ms), reply timeout (ms)

Frame: A data string.

Frame timeout: refers to the time interval between two frames of data received by the
PLC, which ensures that the PLC can distinguish the end time of receiving a frame. It
is usually used to judge whether a frame of data in PLC has been received or not.
When the interval between two frames of data is longer than the frame time-out, it
means the end of one frame of communication data.

Reply timeout: refers to the time when the PLC can not receive the response after
sending the request, waiting for the resend. If the response time is set to exceed 300
ms, when default communicating, the PLC waits 300ms for the other party to respond.
If the response time is not received, the request will be sent again.

If you want to shorten the communication time, you can adjust the above two
parameters according to the size of baud rate.

245

6-3-2 Serial port configuration

(1)Use the USB download cable to connect the PLC with the computer. Here the USB

download cable is the HMI download cable, as shown below, the software must switch to
XNet communication mode.

(2)Open the programming software, click configure/PLC comm port settings. It will show
below figure:

1l Xinje PLC Program Taol
Fle Edit Search View Online | Configure | Option Window Help

e §>=. = |_| PLC Comm Port Settings |b‘| Z PN
:l = H x J @ N Security Settings (Tl/' o I'
o In L:»Enl - HE‘QH ‘I l— ‘M— ‘|T Expansion Module Settings | *
Inz =Inz Del sDel FB FE sF F12 sF12

Operand Data List

roiect

(3)Click add, it will show two modes, modbus mode and free mode, please select free mode, it

will show below figure.
PLCT - Serial Port Set

=4 PLC Config Add ~| Remove
..... /0

fi+] Passwerd Medbus
{i) PLC Serial Por | Free |
----- lE‘ ethernet

Read From FLC Write To FLC Cancel

246

Add - Remove Free Communication Params
- Frane

it Lempar o Ll e timeontims): 3

Bandrate: 19200bps E‘? spense 300
1menut|:ms :

Tatabits: g o |:| Bezin 0x0
Checkbits: Ewven w [End Char: [0
Stopbits: 1 ~ Buffer bit: gbits w

notice:Config effictive nmeed to reboot PLC

¥HET is confizured by the configuration tool

Fead From FLC Write To FLC 0K] Canecel

Port No.: It refers to Port of PLC, COML1 is port1(RS232/RS485), COMZ2 is port2 (RS485),
COM3 is port3 (RS485).

Frame timeout (ms): It refers to the time interval between two frames of data sent by PLC,
which ensures that the receiver distinguishes the end time of receiving a frame.

Response timeout (ms): refers to the time when the PLC can not receive the response after
sending the request, waiting for the resend.

Other serial parameters can be set according to the parameters of the lower device.

(4)After setting, click write to PLC, then cut off the PLC power supply and power on again to
make the settings effective.

6-3-3 Suitable occasion

When does free communication need to be used?

As an example, the situation described in the above section is that XINJE PLC communicates
with the temperature control instrument, and the instrument uses its own communication
protocol, which stipulates that the reading temperature should be sent four characters: "R",
"T", "CR". Each character has the following meanings:

Character Meaning

: Data start

R Read

T temperature
CR Enter, data end

PLC needs to send the ASCII code of the above characters to the instrument in order to read
the current temperature value measured by the instrument. The ASCII code values
(hexadecimal) of each character can be obtained by querying the ASCII code table.

Character ASCII code value
3A

R 52

247

T 54
CR 0D

Obviously, according to the situation described above, using MODBUS instructions can not
communicate, at this time you need to use free communication. Detailed usage will be used as
an example to program the sample program in later chapters.

6-3-4 Free communication instruction

| Send data [SEND]

1)Summary
Write the local data to specified remote station address.

Send data [SEND]

16 bits SEND 32 bits -

instruction instruction

Execution | Normally ON/OFF, rising Suitable XG1, XG2

condition | edge triggering model

Hardware | V3.2.3 and higher version Software V3.4 and higher version
2)Operand

Operands | Function Type

S1 Local data starting address 16 bits, BIN

S2 Send byte number 16 bits, BIN

n Communication port no. 16 bits, BIN

3) Suitable soft component

Operands Word soft elements Bit soft elements
System Consta | Module System
nt
DIF| T|C|D|D|D|D| KH |1]|]Q|[X|Y|M|S|T|C| Dn
DID|ID|X|Y|M]|S D| D m
S1 oo o | o
S2 oo o | o °
n ° K

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM; S includes S, HS; T
includes T, HT; C includes C, HC.

Function and action

o (si) (29 n
Pw% SEND | D10 | D100 | K2

248

o Data sending instructions, MO0's rising edge sends data once.
¢ Communication port. Range: K1~K3. K1: COM1, K2: COM2, K3: COM3.
e In the process of data transmission, the "sending" flag SM162 (communication port 2)

is set on.
MO H

_sme2 | L
fffffffff ffffffffff

o When the buffer number is 8 bits, only low-byte data is sent, so D100 = the number
of registers sent, for example, to send low-byte data in D10-D17, D100 should be set
to 8.

e When the buffer number is16 bits, high and low byte data will be sent, so D100 = the
number of registers sent * 2. For example, when sending high and low byte data in
D10-D17, D100 should be set to 16, and when sending, low byte will be before the
high byte.

| Receive data [RCV]

1) Summary
Write the specified remote station no’s data to local device.

Send data [RCV]

16 bits RCV 32 bits -

instruction instruction

Execution | Normally ON/OFF, rising Suitable XG1, XG2

condition | edge triggering model

Hardware | V3.2.3 and higher version Software V3.4 and higher version
2)Operands

Operands | Function Type

S1 Local data starting address 16 bits, BIN

S2 Receivebyte number or soft component address 16 bits, BIN

n Communication port no. 16 bits, BIN

3)Suitable soft component

Operan Word soft elements Bit soft elements
ds System Consta | Module System
nt
DIF| T|C|D|D|D|D KH I Q| X|Y M|S|T|C| Dn
DID|ID|X|Y]|M]|S D| D m
S1 ol o | o | @
S2 o/ o | o | @ °
n ° K

249

*Notes:

D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM

includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM:; S includes S, HS; T
includes T, HT; C includes C, HC.

Function and action

) (@) o

HL{ RCV | D20 | D200 | K2

Data receiving instructions, M1's rising edge receives data once.
Communication port. Range: K1~K3. K1: COM1, K2: COM2, K3: COM3.

After receiving the data, the "received"” flag SM163 (communication port 2) is set on.

M1 H
Set OFF

all
SM163 y

Receive

++++++++ ++++++++

When the buffer number is 8 bits, the received data is only stored in low bytes, so
D200 = the number of bytes to be received * 2, for example, to receive 8 bytes of data,
stored in the low bytes of the eight registers D20-D27 in turn, at this time, D200
should be set to 16.

When the buffer number is16 bits, the received data is stored in a complete register,
so D200 = the number of bytes to be received, for example, to receive 8 bytes of data,
stored in the four registers of D20-D23 in turn, at this time, D200 should be set to 8.
And when receiving, low bytes are before high bytes.

| Release serial port [RCVST] |

1)Summary
Release the specified serial port.

Release serial port [RCVST]

16 bits RCVST 32 bits -

instruction instruction

Execution | Normally ON/OFF, rising Suitable XG1, XG2

condition | edge triggering model

Hardware | V3.2.3 and higher version Software V3.4 and higher version

250

2)Operand

Operand | Function Type

n Communication port no. 16 bits, BIN

3)Suitable soft component

Operan Word soft elements Bit soft elements
ds System Consta | Module System
nt
DIF|T|C|D|D|D|D| KH 1 Q| X|Y|M|S|T|C| Dn
DIDID|X|Y|M|S D| D m
n ° K

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM:; S includes S, HS; T
includes T, HT; C includes C, HC.

Function and action

n
HL{ RCVST | K2 |

e Release serial port instructions, MO0's rising edge execute once.

e Communication port. Range: K1~K3. K1: COM1, K2: COM2, K3: COM3.

o When releasing the serial port, the "received" flag SM163(communication port 2) is
set OFF.

e For free communication, if there is no timeout or the timeout time is set too long, the
occupied serial port resources can be released immediately through RCVST
instructions for other communication operations.

MO [

sm163_ | |

Receive

6-3-5 Free communication example

Example 1: In chapter 6-3-3, we give an example of communication between Xinje PLC and
temperature control instrument when explaining why to use free communication. Here is an
example.

Operation steps:

251

1. Connect the hardware first. Here we use the serial port 2 of the PLC to communicate, that
is, 485 + on the instrument is connected to A of the output port of the PLC, and 485- on the
instrument is connected to B of the output port of the PLC.
2. Set the serial port parameters of PLC according to the communication parameters of
temperature control instrument. The parameters are set as follows. After setting the

parameters, the power can be restarted.

El

PLC Config

T |_,l'|:|

[Password
- PLC Serial Port
! ethemet

-fnmn) Pulse

[Module

-|po] BD
-1 Eo| ED
- | 4GBOX

Wi} EtherCAT

@ MC

-] WEBOX

Free Communication Params

Add ~ Remowve
Comport: CoM2 W . 0
| - —
cocete fre [
Datahbits: [] Begin char: (el
Checkbits: [] End Char; e
Stopbits: Buffer bit: 85z W
natice:Corfig effictive need to reboat PLC
¥MET is configured by the configuration tool
ReadFomPLC | Wite ToPIC | | OK | | Cancel

3. make the program according to the descriptions in chapter 6-3-3.
Read temperature: “: ”“R™T”“CR”

€ s data start

B G read

R B temperature
“CR” —=mmmmmmmmee- enter, data end
Program:

252

MO

TI | MOV H3A DO H
Read . 0
switch DO: “: 7 ascii code
— MOV H52 D1 =

0
D1: “R” asciicode

— MOV H54 D2 H

D2: “T” ascii code

— MOV HOD D3 H

0
D1: “CR” ascii code

L] SEND DO K4 K2 M
0

DO: “:” ascii code

MO SM162

—H Lu [RCV D10 K4 K2 M
Read Port 2 RS232 D10: Receive starting 0

switch sending flag register

When trying to communicate between PLC and other intelligent devices, it is suggested to use
serial debugging tool to determine the data format of communication, that is, protocol. The
advantages of this method are: the serial debugging tool is easy to modify and flexible to use;
after the serial debugging tool determines that communication can be successful, the PLC
program is written according to the data format obtained, which is often twice the result with
half the effort.

In fact, Modbus-RTU protocol can be regarded as a special kind of free protocol. The
relationship between them is similar to ellipse and circle. We can try to use free format to
realize the function of Modbus instruction.

Example 2: The values of the five registers of a XG1 PLC are sent to the D1-D5 of another
XDM PLC.

If the user understands the Modbus communication, he can use the Modbus-RTU
communication mode to do so, as long as he writes a "write multiple register instructions
(MRGW)" in the host. Here we do it in free communication mode.

Operation steps:

1. Connect the hardware first. Here we use the serial port 2 of the PLC to communicate, that
is, connect A of the two PLC, and connect B of the two PLC.

2. Set the same serial port parameters of the two PLC. The parameters are set as follows.
After setting the parameters, the power can be restarted.

253

=-23 PLC Corfig Add - Remove Free Communication Params
.]
& Password COM2 Comport: | COM2 v E:;E{mﬂ: 0
@@ PLC Serial Port
¥ ethemet Baudrste: | 19200bps | HEsponse 0
@— PUise timeout{ms):
-0 Module Databits:] v | [] Beginchar: D
Bo| BD

% ED Checkbits: | Even w | [] End Char: ()
- I | 4GB0
1?% ﬁg”&” Stopbits: |1 v| Bufferbit: 16631 v
- WBOX

natice:Corfig effictive need to reboat PLC

¥MET is configured by the configuration tool

Read From PLC | Wite To PLC Cancel

3. XG1 program:

SM2

—

MOV H1122 HD1
4366

MOV H3344 HD2
13124

MOV H5566 HD3
21862

MOV H7788 HD4
30600

1T 1T T

MOV H99AA HD5
SM13 -26198

—m | SEND HDI K10 K2

4386

T r 1 r [T

XDM program:
SMO

— | [ROV DL K0 K2 }#

17

Sometimes the data of user communication is stored in multiple registers in the form of
ASCII code. Users need to take this value out, store it in a register and display it on the HMI.
Customers often consider using HEX (ASCII to hexadecimal) instructions to achieve it. But
HEX instructions are difficult to use and understand. Often, we will not use this instruction to
complete it. The relationship between values can be found by ASCII code comparison table.

ASCII code table:

ASCII Control ASCII Control ASCII Control ASCII Control
value character | value character | value character | value character
0 NUT 32 (space) 64 @ 96)

1 SOH 33 ! 65 A 97 a

2 STX 34 ” 66 B 98 b

254

3 ETX 35 # 67 C 99 c
4 EOT 36 $ 68 D 100 d
5 ENQ 37 % 69 E 101 e
6 ACK 38 & 70 F 102 f
7 BEL 39 : 71 G 103 g
8 BS 40 (72 H 104 h
9 HT 41) 73 | 105 i
10 LF 42 * 74 J 106 j
11 VT 43 T 75 K 107 K
12 FF 44 , 76 L 108 |
13 CR 45 - 77 M 109 m
14 SO 46 \ 78 N 110 n
15 SI 47 / 79 0 111 0
16 DLE 48 0 80 P 112 p
17 DC1 49 1 81 Q 113 q
18 DC2 50 2 82 R 114 r
19 DC3 51 3 83 S 115 s
20 DC4 52 4 84 T 116 t
21 NAK 53 5 85 U 117 u
22 SYN 54 6 86 V 118 v
23 TB 55 7 87 W 119 w
24 CAN 56 8 88 X 120 X
25 EM 57 9 89 Y 121 y
26 SUB 58 : 90 Z 122 z
27 ESC 59 ; 91 [123 {
28 FS 60 < 92 \ 124 |
29 GS 61 = 93] 125 1
30 RS 62 > 94 A 126 ~
31 us 63 ? 95 — 127 DEL

Example 3: A pressure controller communicates with PLC in free communication mode to
realize data acquisition. The value displayed on the pressure controller is -0.7814 MPa. The
value collected by PLC is stored from DO, and seven registers are stored in turn. However, the
value of the seven registers combination needs to be taken out and stored in D46 in the form
of decimal.

Through the data monitoring of PLC, ASCII codes in DO~D6 registers can be monitored as
follows:

FLC1-BEHHE

H’f% 7 =l % |y |m s [sn|1 |er|c |m 3 | w|n|nsc|on sp 1o |go |0 |nso | Foo|sro | sem |

+0 +1 +2 +3 +4 +5 +6 +7 +8 +9 S

b DO - a . 7 g 1 +

D40 v

o)zt weml RS [asor|

Switch to decimal format and show as below:

255

FLCI- BB IREE

E\fgﬁ-m v|x\'f\M|5|SM\T\ET|E|}w\ns\}rr|}{c|ﬂsc|n|51]|11]\qn|}m|}ED\FD|SFD|SEMJ
+0 +1 +2 +3 +4 +5 +6 +7 +5 +9
b Do 45 48 46 55 56 49 52 o i 0
D10 0 0 i 1 i 1 0 0 0 0
020 o i i i i i i 0 i 0
D30 0 0 0 0 0 0 0 0 0 0
D40 0 0 i 1 i 1 0 0 0 0

[0 | oitte iepml RS ascrr J

By comparing the relationship between ASCII codes and decimal values, we can find the rule
that there is 48 difference between ASCII codes in D1, D3, D4, D5, D6 and decimal values.
The final decimal values are obtained by subtracting the values in registers by K48 and

multiplying by 10. The formula is as follows:

D46=(D1-48)*1+(D3-48)*0.1+(D4-48)*0.01+(D5-48)*0.001+(D6-48)*0.0001
DO is a symbol bit. Looking up the table, we know that when DO = K45, it represents a
negative value; when DO = K43, it represents a positive value.

The ladder diagram is as follows:

256

i

| SUB D1 K48 DI0
48 0
| SUB D3 K48 D12
55 0
—| SUB D4 K48 Di4
56 0
—| SUB D5 K48 DI6
49 0
| | suB D6 K48 Di8
52 0
= FLT D10 D10
0 0
— FLT D12 DI2
0o 7
- FLT D14 D14
0 8
—| FLT
0 1
L] FLT D18 D18
0 4
| EMUL D12 K01 D20

7 07

EMUL D14 KO0.01 D24

8 0.08

4‘ EMUL D16 KO0.001 D28

1 0.001

—{ EMUL D18 KO0.0001 D32

4 0.0004

EADD

D10 D20 D40

0 07 07

EADD

D40 D24 D42

0.7 0.08 0.78

EADD

=
=
T rr T [T T *+ T T T+ T [T T T T T

D42 D28 D44

0.78 0.001 0.781

EADD

D44 D32 D46

an

0.781 0.0004 0.7814

DO K45
45

DO K43
45

257

| EMUL D46 K-1 D100 |
0.7814 -0.7814
| EMUL D46 K1 D100 |

0.7814 -0.7814

6-4 Communication flag and register

Communication flag

Serial | Register address | Function Explanation
port
SM150 Modbusread-write When the instruction starts to
instruction execution flag execute, set ON
When execution is completed,
set OFF
Port1 | SM152 Free communication sending | When the instruction starts to
flag execute, set ON
When execution is completed,
set OFF
SM153 Free communication received | When receiving a frame of data
flag or receiving data timeout, set
ON.
Require user program to set OFF
SM160 Modbusread-write When the instruction starts to
instruction execution flag execute, set ON
When execution is completed,
set OFF
Port2 | SM162 Free communication sending | When the instruction starts to
flag execute, set ON
When execution is completed,
set OFF
SM163 Free communication received | When receiving a frame of data
flag or receiving data timeout, set
ON.
Require user program to set OFF
Port3 | SM170 Modbusread-write When the instruction starts to
instruction execution flag execute, set ON
When execution is completed,
set OFF
SM172 Free communication sending | When the instruction starts to
flag execute, set ON
When execution is completed,
set OFF
SM173 Free communication received | When receiving a frame of data
flag or receiving data timeout, set
ON.
Require user program to set OFF
Port4 | SM180~SM189
Port5 | SM190~SM199

258

Communication registers

No. Function Explanation

SD150 Modbusread and write 0: correct

instruction execution result | 100: receive error

101: receive timeout

180: CRC error

181: LRC error

182: station number error
Port 1 183: send buffer overflow
400: function code error
401: address error

402: length error

403: data error

404: slave station busy
405: memory error (erase FLASH)

SD151 X-Net communication 0: correct
result 1: communication timeout
2: memory error
3: receive CRC error
SD152 Free communication 0: correct
sending result 410: free communication buffer
overflow
SD153 Free communication 0: correct
receiving result 410: send data length overflow

411: receive data short
412: receive data long
413: receive error
414: receive timeout
415: no start symbol
416: no end symbol

SD154 free communication Count as byte, not include start
receiving data number symbol and end symbol

SD159

SD160 Modbusread and write 0: correct

instruction execution result | 100: receive error

101: receive timeout

180: CRC error

181: LRC error

Port 2 182: station number error
183: send buffer overflow
400: function code error
401: address error

402: length error

403: data error

404: slave station busy
405: memory error (erase FLASH)

SD161 X-Net communication 0: correct

result 1: communication timeout
2: memory error
3: receive CRC error
SD162 Free communication 0: correct
sending result 410: free communication buffer
overflow

259

SD163 Free communication 0: correct
receiving result 410: send data length overflow
411: receive data short
412: receive data long
413: receive error
414: receive timeout
415: no start symbol
416: no end symbol
SD164 free communication Count as byte, not include start
receiving data number symbol and end symbol
SD169
Port3 Modbusread and write Same to SD150
SD170 . ; -
instruction execution result
SD171 X-Net communication Same to SD151
result
SD172 Free _communlcatlon Same to SD152
sending result
SD173 Free_ cpmmunlcatlon Same to SD153
receiving result
free communication Count as byte, not include start
SD174 o
receiving data number symbol and end symbol
SD159
Port4 | SD180~SD189
Port5 | SD190~SD199

260

6-5 Read write serial port parameters

In addition to modifying communication parameters through serial configuration panel, it can
also be realized by reading instruction [CFGCR] of serial parameters and writing instruction
[CFGCW)] of serial parameters.

6-5-1 Read serial port parameters [CFGCR]

1)Summary
Read the serial port parameters to local specified registers.

Read serial port parameters| CFGCR]

16-bit CFGCR 32-bit -

instruction instruction

Execution | Normally ON/OFF, rising Suitable XG1, XG2

condition | edge triggering model

Hardware | - Software V3.4 and higher version
2)Operands

Operand s | Function Type

D Local register starting address 16-bit, BIN

Sl Read serial port parameters number 16-bit, BIN

S2 Serial port no. 16-bit, BIN

3)Suitable soft component

Operands Word soft elements Bit soft elements
System Consta | Module System
nt
DF| T|C|D| D|D|D| KH |[I]|]Q|X|Y|M|S|T|C| Dn
DI DID|IX|]Y|M]|S D| D m
D °
S1 o o °
S2 ° K

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM; S includes S, HS; T
includes T, HT; C includes C, HC.

Function and action

. @ @
%m—{CGFCR HDO | k8 | K2 |

e Operator S1: The number of registers used to read serial parameters is generally 8
(Ethernet communication is 9).
e Operator S2: Serial port range: K1~K3. K1: COM1, K2: COM2, K3: COM3.

o Read 8 parameters of serial port 2 to HDO~HD?7. See sections 6-5-3 for the names and
261

definitions of specific parameters.

6-5-2 Write serial port parameters [CFGCW]

1)Summary
Write the local specified register value to specific serial port.

Write serial port parameters| CFGCW]

16-bit CFGCW 32-bit -

instruction instruction

Execution | Normally ON/OFF, rising Suitable XG1, XG2

condition | edge triggering model

Hardware | - Software V3.4 and higher version
2)Operand

Operands | Function Type

Sl Local register starting address 16-bit, BIN

S2 Write serial port parameters number 16-bit, BIN

S3 Serial port no. 16-bit, BIN

3)Suitable soft component

Operan Word soft elements Bit soft elements
ds System Consta | Module System
nt
DIF| T|C|D|D| D|D KH I Q| X|Y M|S|T|C| Dn
DID|D|X|Y|M]|S D| D m
S1 °
S2 o | o °
S3 ° K

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM; Sincludes S, HS; T
includes T, HT; C includes C, HC.

Function and action

. ®® ®
%ﬁ—{CFGCW HDO‘ K8 \ K2 \

o Operator S2: The number of registers used to write serial parameters is generally 8
(Ethernet communication is 9).

e Operator S3: Serial port range: K1~K3. K1: COM1, K2: COM2, K3: COMS.

e Write HDO~HD7 parameters to serial port 2. See sections 6-5-3 for the names and
definitions of specific parameters.

262

6-5-3 Serial port parameter name and setting

Assuming that HDO-HD8 corresponds to serial port parameters, the parameter names and
settings represented by registers are shown in the table below.

Para Parameter name and settings
meter | MODBUScom | Free X-NET communication Ethernet
addre munication communication OMMS TBN communication
SS (HDO0=1) (HD0=2) (HD0=3) (HD0=3) (HDO0=3)
HDO | Network type
1. MODBUS; 2:free; 3:X-NET; 4: MODBU-TCP
HD1 | MODBUS Baud rate refer | Net ID Net ID Net ID
station no. to table 1 0~32767 0~32767 IP address high
1~254 2-byte
HD2 | Transmission Frame format Station no. Station no. Station no.
mode refer to table 2 | 0~100 0~100 IP address low
0: RTU 2-byte
128: ASCII
HD3 | Baud rate refer | Free properties | Physical layer type
to table 1 bit7: 0: PHY_RS485
1. with start | 1: PHY_SOF(Unidirectional Fiber Ring Network)
character 2: PHY_OFPP(Optical Fiber Point Network)
0: no start|3: PHY RS232
character 4: PHY_RS422
bit6: 5: PHY_TTL (TTLvoltage network)
1. with end
character
0: no end
character
HD4 | Frame format Start character | Link Layer Type
refer to table 2 0: TBN
1: HDN
2: CCN
3. PPFD
4: PPU
5: Ethernet
HD5 | retry count End character OMMS Baud rate Subnet mask
0~5 properties refer to table | high 2-byte
128: Supports 1
periodic
communication,
otherwise does
not support
HD6 | Reply timeout Frame timeout | OMMS baud Token Cycle | Subnet mask
0~65535 0~255 rate refer to Time low 2-byte
table 1 1~60000(ms)
HD7 | Delay before Reply timeout | OMMS slave Max station | Gateway
sending 0~65535 (0 is station list number address high 2-
0~255 infinite wait) Each bit of each | 1~100 byte

byte in the array
indicates whether
the slave station
is accessible (the
master station is
valid, i.e. the

263

station number is
1).

HD8 | -

Gateway
address low 2-
byte

Note: The table does not contain "buffer digits" in free communication mode, so "buffer
digits" can not be read and written through CFGCR and CFGCW instructions, but can be read
and written using MOV instructions. The address of "buffer digits" is shown in Appendix 3.

Table 1: baud rate

Value | Baud rate Value | Baud rate Value | Baud rate Value | Baud rate
1 300 bps 7 19200 bps 13 256000 bps | 19 1000000 bps
2 600 bps 8 28800 bps 14 288000 bps | 20 1200000 bps
3 1200 bps 9 38400 bps 15 384000 bps | 21 1500000 bps
4 2400 bps 10 57600 bps 16 512000 bps | 22 2400000 bps
5 4800 bps 11 115200 bps | 17 576000 bps | 23 3000000 bps
6 9600 bps 12 192000 bps | 18 768000 bps
Table 2: frame format
Stop bit Parity bit Data bit length
Bit7 | Bit6 Bit5 | Bit4 | Bit3 Bit2 | Bitl | Bit0

00:1 000: no 000: 5
01: 15 001: odd 001: 6
10: 2 010: even 010: 7

011: empty 011:8

100: Mask 100: 9

264

7 PID Control Function

In this chapter, we mainly introduce the applications of PID instructions for XG1, XG2 series,
including: call the instructions, set the parameters, items to notice, sample programs etc.

7-1 PID Introduction

PID instruction and auto tune function are added into XG series PLC basic units. Via auto
tune method, users can get the best sampling time and PID parameters and improve the
control precision.

PID instruction has brought many facilities to the users.

Output can be data form D, HD, and on-off quantity Y, user can choose them freely when
programming.

Via auto tune, users can get the best sampling time and PID parameters and improve the
control precision.

User can choose positive or negative action via software setting. Positive action is used for
heating control; negative action is used for cooling control.

PID control separates the basic units with the expansions, which improves the flexibility of
this function.

XG series PLC have two methods for auto tune, step response method and critical oscillation
method.

For temperature control object:

Step response method: the PID auto tune will start when current temperature of object
controlled is equal to ambient temperature.

Critical oscillation method: the PID auto tune can start at any temperature.

7-2 Instruction Form

1)Summary
Execute PID control instructions with the data in specified registers.

PID control [PID]

16 bits PID 32 bits -
instruction instruction
Executing Normally ON/normally closed | Suitable XG1, XG2
condition coil trigger models
Hardware - Software V3.4 or later
reguirement requirement

2)Operands
Operands Function Type
S1 set the address of the target value (SV) 16bits, BIN
S2 set the address of the tested value (PV) 16 bits, BIN
S3 set the start address of the control parameters 16 bits, BIN
D the address of the operation result (MV) or output | 16 its, BIN; bit

port

265

3)Suitable soft components

Operands Word soft elements Bit soft elements
System Consta | Module System
nt
DIF| T|C | D|D| D|D KMH 1 Q| X|Y M|S|T|C| Dn
DD|D|X|Y]|M|S D| D m
S1 oo °
S2 o 0
S3 o 0
D oo e|o 0|00

*Note: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM; S includes S and
HS; T includes T and HT; C includes C and HC.

Functions and Action

Gy () (=) (@)

X0
- PID \ DO \ D10 \ HDO‘ D100 \

. ENoNe
- PID \ DO \ D10 \ HDO \ YO \

® S3~ S3+ 69 will be occupied by this instruction, so please don’t use them as the common
data registers.

® This instruction executes when each sampling time interval comes.

® For the operation result, data registers are used to store PID output values; the output points
are used to output the occupy duty ratio in the form of ON/OFF.

® PID control rules are shown as below:

P: proportion, I: integral, D: differential

o +
| P
M)+ () Y u c(t)
O . + ,() »| Controlled >
"\l gl . "
A A object
» D +

Analog PID control system

e)=r()-—c(t) (1-1)
u(t) =Kp [e(t) + 1/Ti [e(t)dt + TD de(t)/dt] (1-2)

266

Here, e(t) is offset value, r (t) is the setting value, ¢ (t) is actual output value and the u(t) is
the control value;

In function (1-2), Kp is the proportion coefficient, Ti is the integration time coefficient, and
TD is the differential time coefficient.

The result of the operation:

1. Analog output: digital form of MV = u(t), the default range is 0~4095.

2. Digital output: Y =T * [MV / PID output upper limit]. Y is the outputs activate time
within the control cycle. T is the control cycle, equals to the sampling time. PID output upper
limit default value is 4095.

7-3 Parameters setting

Users can call PID in XDPPro software directly and set the parameters in the window (see
graph below), for the details please refer to XDPPro user manual. Users can also write the
parameters into the specified registers by MOV instructions before PID operation.

PID Instruction Parameter Config >

Target Yalue [5¥) DO Measure Value(py) D10 Parameter: HOOD Dutput: 0

Mode Config

Parameter Config

© HMamal O hute O Common Mode () hdvanced Mode
Sampling Time : 0 2| ms 0 e
. . 2L =
Proportion Gain (EP):] = %
o 4095 -
Integration Time(TI): 0 % *100ms
. . . 0 =
Differential Time(TD}:] 2| #10ms hd

FID Computation Scope: i Direction Config

L

PID Control Death Bamd: g O Hezative Movement () Positive Movement

1k

Negative Movement Along with the increase
of the measures definite value BV,
outputralue MY %ill also reduce.

It = usually used in heat up control.

Positive Movement:Along with the

PID Control increase of the measures defnlute value
RV, outputralue MY will alse increasze.
It = usually used in cool control.

0

4k

Step Response

Parameter Range:HDD — HDG2
100 =

15

1k

Suggestien value

Fead From FLC Write To PLC 0K] Cancel

Auto tune mode:

267

PID Instruction Parameter Config

Target Value (Sy) IO Meazure ¥alue(PV)

Farameter Config

() Manual O huto

Sampling Time : 0 s ms
0 =
0 =
0 =

PID Computation Scope: 0 2

PID Control Death Band: | B

Self Study Feriodie Walue: |0 =

Self Stud}," Method: Ztep Response

Self Study PID Control Mede: FID Control

Orershoot Confiz

© Enable Overshoot () Disable Overshoot
oo =

-

15

Suggestion value

*
o Parameter: HOO Dutput: 10
Mode Config
O Commen. Mode () Advanced Mode
0 =
S
4095 -
0 =

Direction Config
© Hezative Movement () Positive Movement

Hegative Movement:flong with the increase
of the measwresz definite value BV,
outputvralue MV will alszo reduce.

It' = usually used in heat up control.

Fozitive Movement:Mlong with the
increase of the measures definite walue
FV, outputvalue MV will al=o increasze.
It'= usually used in cool control.

Farameter Range HDO — HOSS

Read From PLC Write To FLC l [1):4] Cancel

In v3.5.1 and above versions of software, the critical oscillation method can be configured on
the panel (step response method and critical oscillation method can be configured optionally).

7-3-1 Register and their functions

PID control instruction’s relative parameters 1D, please refer to the below table:

ID Function Description Memo

S3 Sampling time Whatever it is manual or auto 32bits without sign,
mode, all needs to set Unit: ms

S3+2 | Mode setting bit0: 0: negative action;

1: positive action
bitl~bit6 not usable
bit7: 0: manual PID;

1: autotune PID

bit8: 1: auto tune successful
flag
bit9~bit10: auto tune method

00: step response

01: critical oscillation
bit11~bit12: not useful
bit13~bit14 auto tune PID mode
(valid in critical oscillation

268

mode)
00: PID control
01: PI control
10: P control
bitl5: 0: regular mode;
1: advanced mode;

S3+3 | Proportion Gain (Kp) 0~32767[%]
S3+4 | Integration time (TI) 0~32767[unit: 100ms] 0 is taken as no
integral.
S3+5 | Differential time (TD) 0~32767[unit: 10ms] 0 is taken as no
differential.
S3+6 | PID operation zone 0~32767 PID adjustment band
width value
S3+7 | Control death zone 0~32767 PID output value
will not change in
death zone
S3+8 | Sampling temperature 0~100[%] Filter the input
filter coefficient sampling
temperature in
advanced mode, 0 is
no input filter
S3+9 | Differential gain(KD) 0~100[%] Only for advanced
mode (normal mode
default value is
50%), 0 is no
differential gain
S3+10 | Upper limit value of 0~32767
output
S3+11 | Lower limit value of 0~32767
output
S3+12 | Change of Unit full scale AD value *(0.3~1%) 16-bit no sign, only
Temperature Corresponds | default value is 10 for step PID
to Change of AD Value
S3+13 | PID auto tune overshoot | 0: enable overshoot only for step PID
1: not overshoot(try to reduce
the overshoot)
S3+14 | Current target value Cannot adjust 16-bit no sign, only
adjusting percentage for step PID
every time in auto tune
end transition stage
S3+15 | Number of times only for step PID,
exceeding the target value default value is 15
in auto tune end transition
stage when limiting the
overshoot
S3+16 | PID type and status Bit0~Dbit1: Internal use
00: manual mode parameters of the
01: step mode system for

10: Critical oscillation mode
Bit8:

0: manual control status

1: auto tune end, enter manual

monitoring purposes
only

269

control status

S3+17

PID max output

0~32767

Internal use
parameters of the
system for
monitoring purposes
only

S3+18

PID min output

0~32767

Internal use
parameters of the
system for
monitoring purposes
only

S3+19

Last time sampling time

0~sampling time (unit: ms)

16-bit no sign,
Internal use
parameters of the
system for
monitoring purposes
only

S3+20

Actual sampling time
space

The value is around the
sampling time

32-bit no sign,
Internal use
parameters of the
system for
monitoring purposes
only

S3+22

Last time user set target
temperature

The value before changing the
target temperature

Internal use
parameters of the
system for
monitoring purposes
only

S3+23

Parameter is
reserved

The following is the joint address (divided into step setting, critical oscillation setting and

manual control)

Step part (read only parameters, only for monitoring)

S3+24 | Actual sampling space | 0~4294967296 (unit: ms) Internal usage
parameters of the
system

S3+26 | Operating segment of 0: Preparation stage Internal usage

auto-tuning PID 1~2: auto tune parameter parameters of the
collection system
3: calculate PID parameters
S3+28 | Duration of auto-tuning | 0~4294967296 (unit: ms) Internal usage
PID operating parameters of the
parameters system
S3+30 | Real-time accumulation | Clear and recalculate the time Internal usage
of two inflection points | when reaching the inflection parameters of the
point0~4294967296(unit: ms) system

S3+32 | Sampling variation of Sampling difference between two | Internal usage

inflection point inflection points parameters of the
-2147483648~2147483647 system
S3+34 | Sampling interval time | 0~4294967296 (unit: ms) Internal usage

of inflection point EK

parameters of the
system

270

S3+36 | Time from auto-tuning | 0~4294967296 (unit: ms) Internal usage
PID to inflection point parameters of the
system
S3+38 | Last sampling -32767~32767 Internal usage
temperature parameters of the
system
S3+39 | The time from auto- -32767~32767 (unit: ms) Internal usage
tuning PID operation to parameters of the
inflection point system
S3+40 | Starting sampling value | -32767~32767 Internal usage
of auto-tuning PID parameters of the
operation system
S3+41 | Number of times at 0~65535 Internal usage
inflection point during parameters of the
auto-tuning system
S3+42 | Useless time 0~4294967296 (unit: ms) Internal usage
parameters of the
system
S3+44 | Stop temperature Temperature at the end of auto- Internal usage
tuning parameters of the
Range:-32767~32767 system
Critical oscillation part (read only parameters, only for monitoring)
S3+24 | PID control mode 0: PID control 16-bit no sign,
1: PI control internal usage
2: P control parameters of the
system
S3+25 | Current auto-tuning 0: Preparation stage 16-bit no sign,
segment 1: start to auto tune internal usage
2~3: auto-tuning parameter parameters of the
collection system
4: calculation of PID parameters
S3+26 | The auto-tuning 0: first peak 16-bit no sign,
temperature is located 1: second peak internal usage
at the number of peaks parameters of the
system
S3+27 | The lowest sampling -32767~32767 Internal usage
temperature parameters of the
system
S3+28 | The highest sampling -32767~32767 Internal usage
temperature parameters of the
system
S3+30 | sampling time of the 0~4294967296 (unit: ms) Internal usage
lowest sampling parameters of the
temperature system
S3+32 | sampling time of the 0~4294967296 (unit: ms) Internal usage
highest sampling parameters of the
temperature system
S3+34 | auto-tuning time 0~4294967296 (unit: ms) Internal usage
cumulative parameters of the
system
Manual control part (read only parameters, only for monitoring)
S3+24 | current target -32767~32767 Internal usage

temperature

parameters of the
system

271

S3+25 | Need to update target 0: no need 16-bit no sign,
temperature 1: need internal usage
parameters of the
system
S3+26 | Number of times to 0~65535 Internal usage
reach target parameters of the
temperature system
S3+27 | PID upper limit of -32767~32767 Internal usage
operational range parameters of the
system
S3+28 | PID lower limit of -32767~32767 Internal usage
operational range parameters of the
system
S3+30 | High voltage time when | 0~4294967296 (unit: ms) Internal usage
PID uses Y to output parameters of the
system
S3+32 | Sampling temperature | The filtered temperature acquired | Floating point,
after last filtering in the last sampling time (the internal usage
input filter constant in the parameters of the
advanced mode needs to be set system
first)
S3+34 | Last temperature Floating point,
deviation internal usage
parameters of the
system
S3+36 | Value of last integral digital value corresponding to Ui | Floating point,
term of the last sampling time internal usage
parameters of the
system
S3+38 | Value of last digital value corresponding to Ud | Floating point,
differential term of the last sampling time internal usage
parameters of the
system
S3+40 | Last PID output Floating point,

internal usage
parameters of the
system

Note: When the auto-tuning mode is changed to manual control, the value in the original
address of S3+24~S3+40 will be overwritten by the value in manual control mode.

7-3-2 Parameters Description

Movement direction:
Positive movement: the output value MV will increase with the increasing of the measured
value PV, usually used for cooling control.
Negative movement: the output value MV will decrease with the increasing of the measured
value PV, usually used for heating control.

Mode setting
Common Mode:

272

Parameters register range: S3~S3+69, and S3~S3+7 need to be set by users;

S3+8~S3+69 are occupied by system, users can’t use them.

Advanced Mode

Parameters register range: S3~S3+69, among them S3~S3+7 and S3+8~S3+12 need to be set
by users; S3+16~S3+69 are occupied by system, users can’t use them.

Sample time[S3]

The system samples the current values according to some certain interval and compares them
with the output value. This time interval is the sample time T. There is no requirement for T
during DA output; T should be larger than one PLC scan period during port output. T value
should be chosen among 100~1000 times of PLC scan periods.

PID Operation Zone[S3+6]

PID control is entirely opened at the beginning and close to the target value with the highest
speed(default value is 4095), when it entered into the PID computation range, parameters Kp,
TI, TD will be effective.

See graph below:

output value .
P FID operation area

target value

FID open completely

time t

If the target value is 100, PID operation zone is 10, and then the real PID’s operation zone is
from 90~110.

Death Region [S3+7]

If the measured value changed slightly for a long time, and PID control is still in working
mode, then it belongs to meaningless control. Via setting the control death region, we can
overcome this situation. See graph below:

273

output wvalue

next valuel135

current value 122

last valuei120

time t

Suppose: we see the death region value to be 10. Then in the above graph, the difference is
only 2 comparing the current value with the last value. It will not do PID control; the
difference is 13 (more than death region 10) comparing the current value with the next value,
this difference value is larger than control death region value. it will do the PID control with
135.

7-4 Auto Tune Mode

If users do not know how to set the PID parameters, they can choose auto tune mode which
can find the best control parameters (sampling time, proportion gain Kp, integral time Ti,
differential time TD) automatically.

Auto tune mode is suitable for these controlled objects: temperature, pressure; not suitable for
liquid level and flow.

Auto-tuning is the process of extracting PID parameters. Sometimes auto-tuning can not find
the best parameters at one time. It needs auto-tuning for many times. It is normal that there is
a vibration in the process. After the optimum parameters are found at the end of auto-tuning,
please switch to the manual PID mode. If the control object is unstable in the process of
manual PID, it can not be controlled at a constant target value, which may be caused by the
unsatisfactory adjustment of parameters. It is necessary to re-adjust the parameters of PID to
achieve stable control.

For step response method: Users can set the sampling cycle to be 0 at the beginning of the
auto tune process then modify the value manually in terms of practical needs after the auto
tune process is completed.

For step response method: Before doing auto tune, the system should be under the non-control
steady state. Take the temperature for example: the measured temperature should be the same
to the environment temperature.

274

For critical oscillation method: user needs to set the sampling time at the beginning of the
auto tune process. For slow response system, 1000ms. For fast response system, 10-100ms.

For critical oscillation method: the system can start the auto tune at any state. For object
temperature, the current temperature doesn’t need to be same to ambient temperature.

Two different methods and PID control diagram:
(1) Step response method
Make sure current temperature is equal to ambient temperature

output
X

DO
+DIFF
D
Setting
DO
-DIFH

(2) Critical oscillation method
The auto tune start temperature can be any value.

Output
A
DO

+DIFF
D

Setting ?lfue
DOV _ o ________

-DIFH

To enter the auto tune mode, please set bit7 of (S3+ 2) to be 1 and turn on PID working
condition. If bit8 of (S3+ 2) turn to 1, it means the auto tune is successful.

PID auto tune period value [S3+12]

Set this value in S3+12 during auto tune. This value decides the auto tune performance, in a
general way, set this value to be AD result corresponding to one standard tested unit. The
default value is 10. The suggested setting range: fall-scale AD result>0.3~1%.

User doesn’t need to change this value. However, if the system is interfered greatly by outside,
this value should be increased modestly to avoid wrong judgment of positive and negative
movement. If this value is too large, the PID control period (sampling time) got from the auto
tune process will be too long. As the result do not set this value too large.

275

»1: If users have no experience, please use the default value 10, set PID sampling time
(control period) to be Oms then start the auto tune.

PID auto tune overshooting permission setting [S3+13]

If set 0, overshooting is permitted, and the system can study the optimal PID

parameters all the time. But in auto tune process, detected value may be lower or higher than
the target value, safety factor should be considered here.

If set 1, overshooting is not permitted. For these objectives which have strict safety demand
such as pressure vessel. Set [S3+13] to be 1 to prevent from tested value over the target value
seriously.

In the process, if [S3+2] bit8 changes from 0 to 1, it means the auto tune is successful and the
optimal parameters are got; if [S3+2] bit8 keeps 0, when [S3+2] bit7 changes from 1 to 0, it
means auto tune is finished, but the parameters are not the best and they need to be modified
by hand.

Every adjustment percent of current target value in auto tune end transition stage
[S3+14]

This parameter is effective only when [S3+13] is 1.

If doing PID control after auto tune, small range of overshooting may be occurred. It is better
to decrease this parameter to control the overshooting. But response delay may occur if this
value is too small. The defaulted value is 100% which means the parameter is not effective.
The recommended range is 50~80%.

Cutline Explanation:

Current target value adjustment percent is 2/3(S3 + 14 = 67%), the original temperature of the
system is 0 <€, target temperature is 100 <€, and the current target temperature adjustment
situation is shown as below:

Next current target value = current target value + (final target value — current target value) x<
2/3;

So the changing sequence of current target is 66 <€, 88 €, 96 €, 98 €, 99 €, 100 €.

T 4
100 Target value
96 Current target 3
88
Current target 2
66 Current target 1

v
—_

Current system value

276

Over target value times in auto-tuning end transition stage when limiting the
overshoot[S3+15]

This parameter is valid only when [S3+13] is 1;

If entering into PID control directly after auto tune, small range of overshoot may occur. It is
good to prevent the overshoot if increasing this parameter properly. But it will cause
responselag if this value is too large. The default value is 15 times. The recommended range
is from 5 to 20.

7-5 Advanced Mode

Users can set some parameters in advanced mode in order to get better PID control effect.
Enter into the advanced mode, please set [S3+2] bit 15 to be 1, or set it in the XDPPro
software.

Input Filter constant [S3+8]
It will smooth the sampling value. The default value is 0%, which means no filter.

Differential Gain[S3+9]

The low pass filtering process will relax the sharp change of the output value. The default
value is 50%; the relaxing effect will be more obviously if increasing this value. Users do not
need to change it.

Upper-limit and lower-limit value [S3+10], [S3+11]
Users can choose the analog output range via setting this value.
Default value: lower-limit output =0

Upper-limit =4095

277

7-6 Application outlines

Under the circumstances of continuous output, the system whose effect ability will die down
with the change of the feedback value can do auto tune, such as temperature or pressure. It is
not suitable for flux or liquid level.
Under the condition of overshooting permission, the system will get the optimal PID

parameters from auto tuning.

Under the condition that overshoot not allowed, the PID parameters got from auto tune is up
to the target value, it means that different target value will produce different PID parameters
which are not the optimal parameters of the system and for reference only.

If the auto tune is not available, users can set the PID parameters according to practical
experience. Users need to modify the parameters when debugging. Below are some
experience values of the control system for your reference:

Temperature system: P (%) 2000 ~ 6000, I (minutes) 3 ~ 10, D (minutes) 0.5 ~ 3
Flux system: P (%) 4000 ~ 10000, | (minutes) 0.1 ~ 1

Pressure system: P (%) 3000 ~ 7000, I (minutes) 0.4 ~ 3

Liquid level system: P (%) 2000 ~ 8000, | (minute) 1 ~ 5

7-7 Application

Example 1:

PID control program is shown below:

SMO

—

M1
—

MOV D100 D10

1 // Move ID100 content into D10

HD2.7
(S)

M2
— i

MO
—

/l auto tune mode, or set to autotune mode

after auto tune end

M1
—

M2
—

M2
.

PID DO D10 HDO YO

// start PID, DO is target value, D10 is the

—~
I
o O
N
~

measured value, from HDO is PID

parameters area; output PID result byY0

/I PID control finish, close auto tune PID

HD2.8 HDOQ9 KO

mode

/I if auto tune is successful, and overshoot is

—| S
HD2.8 HD0Y d
— -

o<
'_\

278

permitted, close auto tune control bit, auto

tune will finish;

If auto tune turns to be manual mode, and
overshoot is not permitted, close auto
tune control bit.

Soft element function comments:
HD2.7: Auto tune bit

HD2.8: Successful flag of auto tune
MO: Normal PID control

M1: Auto tune control

M2: Enter PID control after auto tune

Operation steps:

1. Send the actual temperature to PID collection register

2. Set probably value for P, I, D, sampling period

3. Set ON auto tune control bit M1 to startup PID auto tune

4. M1 will be reset after the auto tune is finished

5. Set ON MO, use the PID parameters getting from auto tune

6. If the PID effect is not good by using the auto tune PID parameters, user can adjust the PID
parameters to get good effect.

Note: This PLC temperature PID control program is applicable to almost all temperature
control projects.

Example 2:

To control the target temperature 60°C in step response mode.
Overshoot is permitted:

1. The target temperature 60°C (600)

2. Parameters setting

279

PID Instruction Parameter Config

Target Value (SV) 04500 Measure Value(PV)
Parameter Config
) Manual @ Auto

Sampling Time : 100 = ms

PID Computation Scope: 000 2

PID Control Death Band: 20 =

Seff Study Periodic Value: 1] 2

Self Study Method: Step Response v

Seff Study PID Control Mode: PID Control
Crwershoot Corfig

(@) Enable Overshoot () Disable Overshoot

100 =
15 =

Suggestion value

D2 Parameter: |D4000 Output: |10
Mode Config
(® Common Mode (_) Advanced Mode
= =
4085 S
Direction Corfig
(® Megative Movemert () Positive Movemert

MNegative Movement:Along with the increase of the
measures definte value PV, outputvalue MY will also
reduce.

It's usually used in heat up contral.

Positive Movement:Along with the increase of the
measures definite value PV, outputvalue MY will
also increase.

It’s usually used in cool control.

Parameter Range:D4000 - D406

Read From PLC | | Wirte To PLC Cancel

3. The result curve

100

f0

60
a0

28

Temperature

A

/ /A\\

/ N

/

0

Explanation:

280

The target temperature is 60 degree, PID calculation range is 10 degree, PID control dead area
is 0.2 degree, auto tune period changing value is 10. When the PID control works in normal
atmospheric temperature, the PID output terminal will heat the temperature from 28 to 100
degree, then the output stops, the temperature keeps increasing to 110 degree (max
temperature) as the remaining warmth. Then the temperature keeps decreasing to 60 degree,
the output starts to heat again to 70 degree and stops. The temperature increases a little then
decreases again. This process will repeat. Finally, the temperature will fluctuate close the
target temperature.

Note:

1. When the temperature reaches 100 degree and stops heating, the PID start bit D4002.7 will
not reset at once, it has delay before reset.

2. When the temperature reaches 100 degree and stops heating, the PID auto tune success bit
D4002.8 will be ON at once.

3. When it starts PID calculation, the PLC will auto set a sampling time (about 2500). This
parameter will be replaced by the PID best sampling time after stoping heating at 100 degree.
4. When it starts PID calculation, the PLC will auto set the PID parameters (P=4454, 1=926,
D=2317). These parameters will be replaced by the best PID value after stoping heating at
100 degree.

5. When the temperature reaches 100 degree and stops heating, the PID start bit D4002.7 will
not reset at once, it has delay before reset. At this time, the sampling temperature is higher
than target temperature. If user sets ON the PID auto tune again, PLC will get all the PID
parameters as 0. Please set ON the PID after the temperature decreases under the normal
atmospheric temperature.

6. If PID auto tune start bit and auto tune success bit are power-off retentive, please set or
reset them propably to avoid calculation error when starting the PLC next time.

7. The final heating temperature will up to 110 degree when the overshoot is permitted. It is
over the target temperature by 50 degree, the overshoot amount is too large.

8. When the PID starts to work, the output will heat the object from 28 degree to 60 degree,
then the output is forced to stop heating to avoid overshoot, but this will interrupt the PID
auto tune process.

9. To enlarge the PID calculation range can suppress the heating overshoot.

Overshoot is not permitted:
1. The target temperature is 60 degree (600)
2. The related parameter settings:

281

PID Instruction Parameter Config

Target Value (SV) D4500 Measure Valus(PV) Do Parameter: |D4000 Output: | YO
Parameter Config MDC!? L .
. _ (@) Common Maode () Advanced Mode
() Manual ® Auto
Sampling Time : 100 = ms 0 -
= =
095 =
PID Computation Scope: 1000 |2 Direction Corfig
PID Corttral Death Band: 20 . (@ Megative Movement () Positive Movement

Megative Movement:Along with the increase of the

measures definte value PV, outputvalue MV wil also
Seff Study Perodic Value: 10 = reduce.

It’s usually used in heat up control.

Self Study Method: Step Response v
Positive Movement:Along with the increase of the
Seff Study PID Control Mode: PID Control measures definite value PV, outputvalue MV wil
also increase.
It’s usually used in cool contral.
Overshoot Config
() Enable Overshoot (@) Disable Overshoot Parameter Range:D4000 - D4063
Each time adjust the increase: 100 = %
Cumrent target value resident Count: 15 =

Suggestion value

Read From PLC | | Wiite To PLC —

3. The result curve

\ Temperature

100

70

60

a0

28

282

H-\’

Explanation:

The target temperature is 60 degree, PID calculation range is 10 degree, PID control dead area
is 0.2 degree, auto tune period changing value is 10. When the PID control works in normal
atmospheric temperature, the PID output terminal will heat the temperature from 28 to 48
degree, then the output stops, the temperature keeps increasing to 70 degree (max temperature)
as the remaining warmth. Then the temperature keeps decreasing to 60 degree, the output
starts to heat again to 62 degree and stops. The temperature increases a little (about 64 degree)
then decreases again. This process will repeat. Finally, the temperature will fluctuate close the
target temperature. The precision is +0.25 degree.

Note:

1. When the temperature reaches 48 degree and stops heating, the PID start bit D4002.7 will
not reset at once, it has delay before reset.

2. When the temperature reaches 48 degree and stops heating, the PID auto tune success bit
D4002.8 will not be ON at once. It hasn’t set ON even when the auto tune succeeded.

3. When it starts PID calculation, the PLC will auto set a sampling time (about 2500). This
parameter will be replaced by the PID best sampling time after stoping heating at 48 degree.
4. When it starts PID calculation, the PLC will auto set the PID parameters (P=4454, 1=926,
D=2317). These parameters will be replaced by the best PID value after stoping heating at 48
degree.

5. When the temperature reaches 48 degree and stops heating, the PID start bit D4002.7 will
not reset at once, it has delay before reset. At this time, the sampling temperature is higher
than target temperature. If user sets ON the PID auto tune again, PLC will get all the PID
parameters as 0. Please set ON the PID after the temperature decreases under the normal
atmospheric temperature.

6. If PID auto tune start bit and auto tune success bit are power-off retentive, please set or
reset them propably to avoid calculation error when starting the PLC next time.

7. The final heating temperature will up to 70 degree when the overshoot is permitted. It is
over the target temperature by 10 degree, the overshoot amount is small.

8. To enlarge the PID calculation range can suppress the heating overshoot.

283

8 C Language Function Block

In this chapter, we focus on C language function block’s specifications, edition, instruction
calling, application points etc. We also attach the common function list.

8-1 Summary

XG series supports to write function blocks in C language in the Xinje PLC software and call
them where needed. It supports almost all C language functions (compared with XC series,
XG series also supports global variables), which enhances the confidentiality of the program.
At the same time, it can call many places and different files, greatly improves the efficiency
of programmers.

8-2 Instruction Format

1) Summary
Call the C language Function Block at the specified place.

Call the C language function block [NAME_C]

16 bits NAME_C 32 bits -
instruction Instruction

Execution Normally ON/OFF, Suitable XG1, XG2
condition Rising/Falling Edge activation Models

Hardware Software

2) Operands

Operands | Function Type

S1 Name of C Function Block, defined by the user String

S2 Corresponding start ID of word W in C language | 16 bits, BIN
function

S3 Corresponding start ID of bit B in C language bit, BIN
function

3) Suitable Soft Components

Operan Word soft elements Bit soft elements
ds System Consta | Module System
nt
DIF| T|C|D|D|D|D| KH | 1| Q|X|Y M|S| T|C| Dn
DIDID|X|[Y|M]|S D| D m

S1
S2 °
S3 [

*Note: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM; S includes S
and HS; T includes T and HT; C includes C and HC.

284

Function and Action

. o
PH—{NAMEC Do | Mo |

S1 is the function name. It consists of numbers, letters and underlines. The first character
can’t be number, and the name length should be <=9 ASCII characters.

The name can be the same with PLC’s self instructions like LD, ADD, SUB, PLSR etc.
The name can’t be the same with the function blocks existing in current PLC.

8-3 Operation Steps

1. Open PLC edit tool, in the left “Project” toolbar, choose “Func Block™, right click it and
choose “Add New Func Block”.

Project 23| e

H Project
-1 PLCA [Ap
E £ g Code
_____ E"rég Ladder Basic i
El E Function Library

: Libri

I E] ocrouitoeac i
______ |:| Config Bloc Create New Source |f5.
------ E Seguence Create New Header

..... BB comment Editor

..... @ Free Monitar

----- {5 Data Monitor Remove Library File

----- =l Set Reo Init Valog ™

Batch Import Files

2. See graph below, fill in the information of your function.

285

Function Block Configuration Wizard - X

i
: Weloome to use function block configuwration wizard
=]
S-wizard
;----Fi].l in the 1 Source File: FU'NCI‘\ Verzion: | (0.0
i Configurati on
i-Preview
Dezoription:
Function Block
Name
Editor Name
fAuthor Date: |z0zz4F 4F13@ [~

o e

Function Block name is the name we use to call the BLOCK. For example: the diagram of
FUNC1 should be written as below:

| Mo
| [T | FUNCL DO MO }—‘

3. After creating the new Function Block, you can see the edit interface as shown below:

FIL1 — Ladder HonoaB] ook W] |

P Infermation 3 Main function’s name (it’s function block’s
1] fanns] Name, this name can’t be changed freely, and —
2 Fuy users should modify in the edit window.)
3 ey
4 Lurthor
5 UpdateTi 2013-3-5 10:49:07
g Cortnent
-
= FEEEREEEEE e i e i i i e i e i i e e e e e e e e e e e e e i
o woid FUNC1{ WORD W , BIT B |
106 {
11
iz | ¥
13
Edit your C language WORD W: correspond to soft component D
program between ‘ {}’ BIT B: correspond to soft component M

Parameters’ transfer way: if call the Function Block in ladder, the transferred D (HD)
and M (HM) is the start ID of W and B. Take the above graph as the example, start
with DO and MO, then W[0] is DO, W[10] is D10, B[O]is MO, B[10]is M10; if the

286

parameters in the ladder are HDO, HMO, then W[0]=HDO,B[0]=HMO; if the
parameters in the ladder are D100, HM100, then W[0]=D100, B[0]=HM100. So,
word and bit components start address are defined in PLC program by the user.

L]

Note: The local variable defined inside the C function cannot be more than 100 words.

e Parameter W: represent Word soft component, use it in the form of data group. E.g
WI[0]=1; WI[1]=WI[2]+WI[3]; in the program, use soft components according to
standard C language rules.

e Parameter B: represent Bit soft component, use it in the form of data group. Support
SET and RESET. E.qg: B[0]=1; B[1]=0; And assignment, for example, B[0]=B[1].

e Double word operation: add D in front of W. E.g. DW[10]=100000, it means
assignment to double-word W[10]W[11]. Double-word operation: Support the
definition of floating variable in the function, and execute floating operation;(E.g:
float register DO(double word) means FW[0], FW[0]=123.456)

e Other soft elements definition in C language:

When a function block is created, #define SysRegAddr_ HD_D_HM_Mis default defined in
the main function. If you need to use input (X) and output (Y), you need to add X, Y in the
default Macro definition “#define SysRegAddrHD D HM_M?”, which will be “#define
SysRegAddrHD D HM M X Y”. For example, set X0 state to coil M0, B[0]=X][0]; set YO
state to coil M10, B[10]= Y[0O]. (Note: The corresponding X and Y are expressed in decimal
rather than octal in C language).

Similarly, the applications in C are same for non-power off memory process S, counter C,
timer T, counter register CD, timer register TD, register D (HD) and coil M (HM), etc. Macro
definition “#define SysRegAddr S C T CD TD D M. If they are power off memory
process HS, counter HC, timer HT, counter register HCD, timer register HTD, etc, Macro
definition “#defineSysRegAddr HS HC HT HCD_ HTD”.

Examples: W[0]=CD[0];W[1]=TD[0];B[1]=C][0];B[2]=T[O0];

Note: Software component types are supported except SEM.

e When the function block is created, default define #define SysRegAddr HD_D_HM_M
in the main function.

9 wvoid FUNC1({ WORD W , BIT B)

18 B4

11 #define SysReghAddr HD D HM M
12

13

14 | }

15

It is recommended to use it as a local macro definition, that is, inside the function body.

e Function Library: The user function block can directly use the functions and constants
defined in the function library. See chapter 8-10 for the functions and constants
contained in the function library.

e The other data type supported:

287

BOOL, //BOOL Quantity

INT8U; //8 bits unsigned integer

INTSS; //8 bits signed integer

INT16U /116 bits unsigned integer
INT16S /116 bits signed integer

INT32U /132 bits unsigned integer
INT32S 1132 bits signed integer

FP32; /I single precision floating

FP64, /[double precision floating

Examples: #defineDHD*(INT32S*)&HD //DHD means double word HD

#define FFW*(FP64*)&D //FFW means double precision floating numbers

#define DDW*(long long*)&D //DDW means four words register
Explanation: DHD is 32-bit signed integer. DHD[O] represents a 32-bit signed integer power-
off holding register composed of HDO and HD1.

Predefined macros: #define true 1
#define false 0
#define TRUE 1
#define FALSE O

e There is no non editable option for the export of header files, others are the same as the
source files.

e In C, there are two rules for referencing header files, #include “xx.h”and #include
<xxx.h>. when using the header file in the PLC project, it needs to use #include ”xxx.h in
source file.

e Do not use Marco definition #define SysRegAddr in the header file, this Marco definition
is ineffective in the header file, which only can be used in source file.

8-4 Import and Export the Functions

1. Export
(1) Function: Export the function as the file, then other PLC program can import to use;

I ;"1 Project
o123 pLCt
=] Code
EE% Ladder

[d.. Instruckion Lisk

=[] Func Black
—1 IExp-:-rt Fune Block
|:| =
:E] Camm Remowe Funec BElock From Froject

B Free Manitor
E [Daka Monitor
E _:] Set Req Inik value

288

Func Block Info Edit 3

Fune Block Name:| | Version:

Description:

Export : :
@ Edit () Ho Edit [ox ;|[el]

(2) Export Format

a) Edit: Export the source codes out and save as a file. If import again, the file is editable;

b) No edit: Don’t export the source code, if import the file, it’s not editable. Ethernet models
and non Ethernet models cannot be used in common. You only need to modify the model
before exporting it.

2. Import
Function: Import the existing Func Blockfile, to use in the PLC program.

Froject
;_-;1 Project
[EREER TS|
=] Code
Egi Ladder

Id.. Instruckion List

I:‘ Zeq Add Hew Fune Elock

= comme Import Fune Elock From Disk
@ Free Monibar

Data Maonitor

E] Set Req Inik Yalue

Choose the Func Block, right click ‘Import Func Block from Disk’, choose the correct file,
and then click OK.

8-5 Edit the Func Blocks

Example: Add DO and D1 in PLC’s registers, and then assign the value to D2;

(1) In ‘Project’ toolbar, new create a Func Block, here we name the Func Block as ADD_2,
then edit C language program;

(2) Click ‘compile’ after edition.

289

FLC1 - Ladder FoneBlock—ADD 2
Information Export Compile

7 W [2] =W [O] +W [1]
8 T F T FFTFTETET T AT T FTFTFT T TR AT T AT T TR R AT AT FTFT TR AL FTFAFTFTFTET AT T AT FTFTE A
o wvoid ADD 2{ WORD W , BIT E

100 W [2] =W [0] +W [1]]

11

1z H

13

L4

Information(l)

Errar List | ©ukput
1.0 A4 A Emp PrFUncEAADD 2 o0 In Function 'aD0_2"

oA EmpPHFUReBVADD_Z.ci6: 1 error: expected ;' before 'asm' \

The information list

According to the information shown in the output blank, we can search and modify the
grammar error in C language program. Here we can see that in the program there is no ;’ sign
behind W [2] =W [0] + W [1].

Compile the program again after modifying the program. In the information list, we can
confirm that there is no grammar error in the program.

Information Export Compile

=] Comnent :
7 W [2] =W [0O] +W [1]
8 o e e e e e i e e e

o wvoid ADD 1([WORD W , EIT B]
100 {W [2] =W [0] +W [1]:]
11

1z +
<

Information

Error List | Cubput

(3) Write PLC program, assign value 10 and 20 into registers DO, D1 separately, then call
Func Block ADD_2, see graph below:

SMO

— | [mov W10 Do H
Mo kK20 D1 H

MO

— | { apz2oo wmo H

290

(4) Download program into PLC, run PLC and set MO.

W MOW k10 Do H
10

Mow k20 D1 H
20

ﬁ { aoo2po w0 H
0 oN

(5) From Free Monitor in the toolbar, we can see that D2 changes to be 30, it means
assignment is successful;

[Xinje PLC Program Tool
File Edit Search View Online Configure Option Window Help

NEHYaRermEE29@ 884003 2HER

~

e

Free Monitor

PLC1-BR%E1 o>
SEEL ~ EIN S e ki | 2l ER

IFires P =i i I

v 30 B 103H

8-6 Program Example

If PLC needs to do complicated calculation (including plus and minus calculation), the
calculation will be used for many times, C language function is easy to use.

Example 1:

Calculation a= b/c + b*c+(c-3)*d

Method 1: use ladder chart:

Get the result of c-3

Get the result of three multiplication equations

Get the sum

Ladder chart only support two original operands, it needs many steps to get the result.

291

| SUB D2 K3 D10 |-

:

BATH
ONZ&[E

Note:

2 -1
D2:C

D10:C-3
| MUL D10 D3 D12 |-
D10:C-3 o83
D3:D

D12;(C-3)*D

— MUL D1 D2 D14 |-

D1:B 42 8

D2:.C

D14:B*C

— DIV DI D2 D16 |-
4 2 2

D1:B
D2:.C
D16:B/C

— WTD D16 D18 H
2 2

D16:B/C
D18:B/C4t FHE Ay W F-

| DADD D12 D14 D20 |-
3 8 5

D12;(C-3)*D

D14:B*C

| DADD D20 D18 D22 |-
5 2 7

D18:B/C45 T NI T
D22:A

1. The result of MUL is Dword, the result is stored in D14~D15.

2. The result of DIV has quotient D16 and remainder D17. If D17 has value, the calculation
precision will decrease. Please use float format to ensure the precision.

3. D16 quotient is word value, in plus calculation all the data should be changed to Dword.
The final result is stored in D22~D23.

Method 2: use C language:

MO

—

RESULT DO MO {

RESULT Function name
DO In the function, W [0] =D0, W [1] =D1...

If D0=D32, then W [0] =D32, W [1] =D33...

If S2=HD32, then W [0] =HD32, W [1] =HD33...
MO In the function, B [0] = MO0, B [1]=M1...

If S2=M32, then B [0] = M32, B [1] =M33...
If S2=HM32, then B [0] = HM32, B [1] =HM33...

292

C program
2 void RESULT(WORD W , BIT B)

10 {

11 long int a,b,c,d;;
12 | b=W[1]:

13 c=W[2]:;

14 | dA=W[3]:

15 a=b/c+b*c+(c-3) *d;
16 | DW[4]=a;

12 B

Method 2 can simplify the program.
The above C language function is similar to ladder chart of method 1, whose precision is not
high. If it needs to get the high precision, please use float calculation.

Example 2: Calculate CRC parity value via Func Block

CRC calculation rules:

(1)Set 16-bit register (CRC register) = FFFF H

(2)XOR (Exclusive OR) the first 8-bit byte message and the low 16-bit CRC register.
(3)Right shift 1 bit of CRC register, fill 0 into the highest bit.

(4)Check the right shifted value, if it is 0, save the new value from step3 into CRC register; if
it is not 0, XOR the CRC register value with A001 H and then save the result into the CRC
register.

(5)Repeat step3&4 until all the 8-bit have been calculated.

(6) Repeat step(2)~(5), then calculate the next 8-bit message. Until all the messages have been
calculated, the result will be the CRC parity code in CRC register.

Edit C language Function Block program, see graph below:

= void CRC CHECE({ WoRD W , BIT E)
10 i

11 int i,j,m,n:

12 unsigned int reg cro=0xffff, k;
13

14 fori i = 0 ; 1 < W[O] ; i++)
15 i

16 reg crot=W[i+l];

17 for (j=0;3<8:3++)

15 i

19 if (reg cros0x01)

20 reg_crc=ireg_crc>>1]*DanDl;
21 else

s reg crosreg crorrl;
23 }

24 }

25

26 m=W[0] +1:

27 n=wroj+2;

z28 k=req croc:0xfrf00;

29 Wnl] = k==3:

30 W[m]=reqg croslxft;

31 }

293

Edit PLC ladder program,
DO: Check byte number of data,
D1~D5: Check data content. See graph below:

2

Y MOV HS D0
MOV H12 D1
MOV H3 D2
MOV H56 D3
MOV H78 D4
MOV Ho D5

00
Y CRC_CHECK | DO | MO

Download to PLC, then RUN PLC, set MO, via Free Monitor, we can find that values in D6
and D7 are the highest and lowest bit of CRC parity value.

8-7 New functions

(1) Format
Click the advanced/editor support setting menu to open the C editor support options window.

/"PLC1 - Ladder } SourceFile-FUNC1 |

Information Export | Adya

1 —————— TEEEE * Fa————— * TEEEE
2 Functio

3 Version

4 Author:

5 UpdateTime: 2021-88-16 14:16:31

b Comment:

-

8 o e s
9 void FUNC1(WORD W , BIT B)

10 B {

11 #define SysRegAddr_HD_D_HM_M

12

13

14 }

15

294

Code Format

Fomat (® Alman

Auto format completed statements when entering ™"
Auto format completed sequence when entering "}"
Handiing special characters

IntelliSense

auto compelte code
auto indent

auto complete brace

(2) Local code auto format
» Auto format completed statements when entering *;”

When the user enters the character ";" format the statement of the current row.
» Auto format completed sequence when entering “}”

When the user enters "}", format the contents in "{}".

(3) Handling special characters
The full width characters entered by the user into the editor need to be converted to half
width characters because they are not recognized by the compiler.

(4) Auto complete code

When the user inputs characters, the code prompt function will give certain prompts to
help the user input and complete the code.

» Submit

When the user press Enter or “;”, the currently edited code will be submitted to the
analyzer for analysis and a list of code tips will be generated.

> Prompt

When the user inputs characters, the code prompt control will pop up automatically to
match the user's input and give a prompt.

295

vold FUNCL({ WORD W, BIT B)
#define SysRegAddr_HD D _HM M

il
} if
int
INTSL
INTSS
INT15L
INT16S
INT32L
INT325
if) { }
if0{ Jelse{}

» Access tips for member variables

When the user enters "." "or" - > ", the code prompt function will help the user prompt the
members in the structure or consortium type of the defined variable, as shown in the
following figure.

struct TestStruct

(=
int a;
int b;
—1
vold FUNC1{ WORD W, BIT B)
=

#define SysRegfddr HD D _HM_M

TestStruct test;
test.

} a
- b

» Auto indent

The automatic indentation function of the editor is optimized, which is more in line with
user habits.

» Auto complete brace

When the user enters "(" ["{", it will automatically help the user generate the
corresponding bracket)] "}".

(5) Comment / uncomment

Comment selects / deselects the comment for the row.
The shorcut key is Ctrl +/.

(6) Function library

Please refer to chapter 8-8.

8-8 Function library

It provides the functions of encryption, encapsulation, export and import of C function blocks.

296

8-8-1 New function

8-8-1-1 Classification of Libraries

Function library are divided into project library and global library.

Project library: the functions in the user's project library are saved under the project and can
be used directly.

Global Library: the function functions in the user's global library are saved in the local
directory for user's convenience.

8-8-2 Basic functions

8-8-2-1 Open and save file

Start XDPPro software, run a blank project or open any existing project to view the function
library.

Notes:

The function library is divided into project library and global library. A default library (i.e.
project library) is added to the blank project by default;

If the project under the old version is opened with the new version, its function function is
added to the default library;

If the project under the new version is opened with the old version, the function functions in
the default library are retained, and the rest cannot be parsed.

8-8-3 Newly build

8-8-3-1 Create project library

Select "Function library" in the "Project” toolbar on the left, right-click and select "Create
Project Library", and you can edit the name, version, description, author and other
information of the project library in the pop-up interface, as shown in the following figure:

Project
E Project

Create Project Library
Create Global Library

Import To Project Library
Import To Global Library

Library Manager

— O X

| 1"“;?“ [vioo

Library Deseription

Aut.hor Your_Company? | Date: zozedE 78 4

OE Cancel

297

Note: if the library name is the same as any library name in the current library, the following
pop-up window will appear:
Error >

Library Information Is Incomplete:
Function library name Conflict

HEE

8-8-3-2 Create global library

Select "Function library™ in the "Project” toolbar on the left, right-click and select "Create

Global Library™, and you can edit the name, version, description, author and other

information of the global library in the pop-up interface, as shown in the following figure:
Create Project Library

Create Global Library

Import To Project Library
Import To Global Library

Library Manager

— O >
Versio
| " oo
De=cri : .
. Library Desoription?
Aut.hnr Y our_Comp aror? Date: |z0zEEE 7H 4H
0K Cancel

Note: if the global library directory is not set, the prompt message shown in the following
figure will appear and the Global Library Directory setting interface will be displayed:

298

Hint

Path: I: Global library default path is missing, Meed set global library default

path is missing

HEE

-P ath

.1

After setting the path, the new library file window is displayed, and the library information
(name, version, description, author) is filled in. If the library name is the same as any library

name in the current library, the following pop-up window will appear:
Error >

Library Information Is Incomplete:
Function library name Conflict

HEE

8-8-3-3 Create new source

In the "project” toolbar on the left, select the project library or global library to which the
source file needs to be added in the "function library", right-click and select "new source file"
to edit the name, version, description, author and other information of the source file in the

pop-up interface, as shown in the following figure:

Create New Source

Create New Header
Batch Import Files

Remaove Library File

299

Function Block Configuration Wizard

—
— Welcome to use function block confizuration wizard
=
[Elwizard
#-Fill in the il | Source File: [FUNCI | Version{1.0.0
Configuration
LoPreview

Description:

suther: | Date: [oozel 1B 4R O

£ >
6| omed

Click "next" after filling in to configure parameter information:

Function Block Configuration Wizard - X
—
— Welcome to use function block configwration wizard
=
Ehwizard ||: Add Daelete | Up Down | Reset
iFi1ll in the i1
E--Conf?guratwn Parameter FParameter Farameter Param:‘:eter Supl?ort
P Preview Hame Type Mode Oecupied Farameter Comment Ille\rlces
Count List
W FINT155 In, Out urknown I HO
B BIT In, Out undnown M HM

£ >
Previous 0K Cancel

After completing the parameter configuration, click "next" to display the preview interface of
the source file. If there is a problem, click "previous" to reset the parameters. If there is no

problem, click "OK" to complete the addition of the source file.

300

Function Block Configuration Wizard — *

=
— Welcome to uzse function bloeck configuration wizard
—l =
E|--w_izard 1 JEEE e e
~Fill in the § 2 * FunctionBlockName: FUNC1
-~ Configuration 3 * Version: 1.8.0
i Preview 4 * puthor:
5 * UpdateTime: 2022-87-84 13:54:20
6 * Comment:
7 Ak kR R Rk Rk Rk R R Rk Rk kR kR Rk kR Rk Rk Rk R Rk kR Rk kR Rk Rk ks
a8
9 Jl|'=-<=-<
1@ * [@summary
11 * @param W
12 * [@param B
13 */
14 vold FUNC1(PINT165 W,BIT B)
15
16 #define SysRegAddr_HD_D_HM_M
17
18 | }
19
£ > £ >
Frerious Cancal

8-8-3-4 Create new header
In the "Project" toolbar on the left, select the project library or global library to which the
source file needs to be added in the "Function Library", right-click and select *"New header
file" to edit the name of the header file in the pop-up interface, as shown in the following
figure:

Create Mew Source

Create New Header

Batch Import Files

Remove Library File

Head File Information b4

Head File Name: |f1.1.nc1

Conel

8-8-4 Edit

8-8-4-1 Edit library information

Click "project library"” or "global library™ in the project bar on the left to edit the information,
and you can view and edit the basic information / file information / restriction information of
the library in the pop-up library information interface:

301

| Basic inﬂ:r" Files info] | Condtion infol

Library
Name:
Descrip
tion:

[Library1 Version v .0

<Library_Description=

Author: |<Yuur_t'.um|:|an1_.f> Date: 2022F TH 48

1) Basic information
Library name: only letters and numbers are allowed for the library name.
Version: the format of the library information version is "V primary. Secondary. Revision".

2) Files information
Basic info F||35||'|f|1 Condition info
Batch Export ~ |[X] Batch Delete

[A File Author Version Date Description

I T I O O T I

® Add the source file / header file under the selected function library, and the file
information interface displays the basic information of the file.
The imported file determines whether the user can edit it.

e The files exported in batch can be edited or not.
After deleting the application in batch, remove the reference of the library file in the PLC
project.

3) Condition information

Models under the blacklist cannot be used, and only those models under the whitelist can be
used.

302

Basic info Files info

Tip: config limited used models info for function library

| Unlimited v|

e
] o
[]RC
[] x&8
[]xo
[xe
[%L
[xK
[xE

8-8-4-2 Source file information

moccso mWceso]

[] ccso-cso

Click the source file to edit information in the project bar:

-[P=| Libraryl
. i} c Funcic
b funeth

mccsoce |

In the pop-up source file interface, click information to modify the source file information,
the source file function signature is modified, and the code is modified accordingly.

Ilnformalionl Export Search Advance - | ¥ Compile |{}, Format Code = Switch Comment Code

1 !
2 * FunctionBlockName: FUNCL
3 * Version: 1.8.8
4 * Author:
5 * UpdateTime: 2022-87-84 13:54:20
& * Comment:
7 /
S o Function Block Information Edit Form X
1@ * [@summary
1L = @param W Hame: | version: [1.0.0 |
12 * [@param B
13 =/ huthor: | | Date: |2022$ 78 48 Dv|
14 void FUNCL1(PINT165 W,BIT B)
15 B4 . Add Daelete | Up Down | Reset
16 #define SysRegAddr HD_D_HM_M
17 Faramteter Support
Parameter FParameter FParameter a Lad E ter C N Devi
18 } Hame Ty‘pe Mode CCoupl e arameter Ommen’ IEVICES
19 Count List
W FINT16S In, Out unknown |D HD
B FIT In, Out unknown |M H
Function Deseription:
OE Cancel

303

8-8-4-3 Header file information
Click the header file to edit information in the project bar:
o[£ Libraryt

Lo FUNC1.c
In the pop-up header interface, click information to modify the head file information, the
header function signature is modified, and the code is modified accordingly.

Information Export Search Advance - Compile |}, Format Code "= Switch Comment Code

1 #ifndef _FUNC1_H

2 #define _FUNCL H
3
4 #endif
Head File Information *
Head File Hame: |funcl
Cael
8-8-5 Export

8-8-5-1 Export the function library
Click "Project library" or "Global library" in the project bar on the left to edit the information,
and click "Export" in the pop-up library information interface:

PLC1 - Ladder l/-Projed Library:Libraryl)/Global Library:Library2 I/SourceFile:FUNm VHE&dFilefund]

& Apply “LiRestore ||[Export - Trans To Project Library

Commeaon Export

Secret Export

Library Library?

|\.-'er5i|:rn V100
Name: :

Descrip
tion:

=Library_Description=

Normal export: if the library file is an editable library, export it with an editable library; If the
library file is a non editable library, export it as a non editable library.

Encrypted export: if the library file is editable, the source file in the library file is compiled
and exported as a non editable library; If the library file is non editable, save the library file

directly.

8-8-5-2 Export source/header file
Right click the source file / header file to be exported in the project bar --> Export file:

304

Project X

@ Project
=[] PLet
- E cose
EE; Ladder
-3 Function Library

- Default Library

= Library1
i Edit Info
L..[& Libraryz | Export File
..... [config Block Delete File

..... E] sequence Biotx

Or click the source file / header file to be exported in the project column on the left, and click
"export™ in the editing interface on the right:

PLC1 - Ladder VProjecl Library:Library1 L/G\oba\ Library:Library2)/SourceFiIe:FUNm l/HeadFilefunﬂ]
Information I Export ISearch Advance = | ¥ Compile [}, Format Code = Switch Comment Code

1 /
2 * FunctionBlockName: FUNC1
3 * Version: 1.8.8
4 * Author:
5 * UpdateTime: 20922-87-84 13:54:20
6 * Comment:
7 /
8
9 f**
18 * @summary Source file info b4
11 * [@param W
12 * (@) B q 5
e *‘,Lpa"a" Seurce File Namd FUNCI Version: [1.0.0
14 vold FUNC1(PINT16S W,BIT B) Dezeription
15 B¢
16 #define SysRegAddr HD D HM M
17
1B | }
19

Export

@Edit (O ¥ Edit Cancel

Select the export mode (editable or not) in the pop-up file information.
Click OK after setting and select the file saving path.
After selecting the path, click OK to complete the export.

8-8-6 Import
8-8-6-1 Import the function library

Select "Function Library" in the "Project" toolbar on the left, right-click and select "Import to
Project Library" or "Import to Global Library":

L i |

Create Project Library
Create Global Library

Import To Project Library
Import Te Global Library

-FE] Comment Ed
R | R | SRR B

In the pop-up "select function library file" interface, select a file and click "open™ to complete
the import.

Library Manager

305

8-8-6-2 Import function files
Right click the "Project Library" or "Global Library" in the project bar on the left to import
files, and select "Batch import files":

Lag vt
2.4 PLCY [

EEE% Code
£E§ Ladder E
[—]E Function Library

- Defautt Library

- [B2) Library1 [
_____ 3 config Bio Create Mew Source
----- E sequence Create New Header

Batch Import Files

..... : Data Monitor Remove Librar_I.r File

Select the function file to be imported in the "select file" interface, and click "open" to
complete the file import.

8-8-7 Other functions

8-8-7-1 Library manger
Select "Function Library" in the "Project"” toolbar on the left, and right-click to select "library

management":
o TAT T = i FLw1 =1
E Project
&[] PLCA @ Apply
EEE% Code
EE% Ladder Basic info
-0
- Default L Create Project Library
Library1 Create Global Library
...[& Library2 . .
_____ [Config Block Import To Project Library
..... El sequence Big Import To Global Library

..... E Comment Editor |

R Cram Hamdar

Library Manager

In the pop-up "Function Library management window", you can complete the creation, import,
deletion (and removal of library files referenced in the project) and setting of the function
library. By checking the function library in the management, you can apply generation, and
then call it in the project.

306

Function library manager form

Create Import Delete Setting
5 i e AlzEiE
=] [[Jerojec. ..
‘ [Defa .. vi0.0 Your Company’y 2022/7/4 13:21:48
‘ [Lite. .. vio0 (Your Company’ 2022/7/4 13:41:55
S [61ebal. ..

TLitr... ¥1.0.0 Your Companyy 2022/7/4 13:47:31

0K Cancel
Click settings to change the Global Library Directory:

F orary manage - O x
Create Import Delete | Setting

EHR s y==1 BIEEAE

I_I:_H:‘ |:|Projec. .

| Eﬂefa. .o vion Your_Comparar? P0RZST/4 13:21:49

| FLiter... vi.0. Your_Companyy 2022/7/4 13:41:58

é'D i Change Function Library Default Path *

VI zerstinge'llesktop Edit Path
Default 0K Cancel
)4 Cancel

8-8-7-2 Delete library file

In the "function library management window" of the previous chapter, check the
corresponding library file and click Delete to delete the library file in the current project.

307

Function library manager form

Create Import Setting

B R 15 el :p 1]
I?-D |:|Pr-:-ject Library
| M Defanlt Li... ¥1.0.0 Your_Company 20227774 13:21:49
| M Litraryt ¥i.ono Your_Company 2022/7/4 13:41:E65
2] [[]olobal Library

T Librarye ¥i.ono Your_Company 20224744 13:47:31

8-8-7-3 Remove library file
Right click the "Project Library" or "Global Library™ in the project bar on the left to import
the file, and select "Remove Library file™:

Project @ x
@ Project ~
=3 pLCA

EEE% Code
EE% Ladder
=@ Function Library

EI Libra Create New Source

...... Create Mew Header

Batch Import Files

----- Ed config EI" Remove Library File

Note: Remove the library file means to cancel the application of the file from the current
project without deleting it.

8-8-7-4 Delete source/header file
There are two ways to delete source / header files:

Method 1: right click the source file / header file to be exported in the project bar - > delete
file:
Project a x
[ﬂ Project
ERmT
BEE% Code
EE% Ladder
BE Function Library
Default Library
- & Libraryt

|

Edit Info

W funct
-[&] Libraryz Export File
[config Block | Delete File

Method 2: click the function library to delete the file in the project bar on the left:

308

- Function Library
Default Library
. @-[E) Library1

: @ Library2

F st SR T

PLC1 - Ladder J Project Library:Libraryl | Global Library:Library2 |

[# Apply “9 Restore |[] Export - [Trans To Global Library

Basic info | Files info | Condition info

Batch Export - |[X] Batch Delete

] & File Author Wersion Date Description

|| FUMNC1.c 2022-07-04 13:54:20

|:| func1.h

Check the files to be deleted and click "batch delete™:

PLC1 - Ladder } Project Library:Libraryl | Global Library:library2 | SourceFile:FUNC1 | Head|

@ Apply 0 Restore | [} Export -) Trans To Global Library

Basicinfo Files info Condition info

Batch Export - ||[%] Batch Delete

|:| All File Author ersion Date Description

FUNC1.c 2022-07-04 13:54:20

|:| funci.h

Click "Apply" and a prompt message "successfully applied" will appear. The file has been

deleted.

Hint >

o Apply Success

WEE

8-8-7-5 Transfer
The "global library" and "project library" can be converted to each other, and the editing

interface of the function library can be opened (for specific steps, refer to chapter 8-8-7-4,

method 2).

309

PLC1 - Ladder } Project Library:Library1 |~ Global LibraryiLibrary2 |

[# Apply “URestore |[Export "I I}l Trans To Global Library I

Files info Condition info

Library

i Version
Library1 V.00
Name: brary .
Descrip - o
<Library_Description=
tion: - i
Author: |<Your_Company= Date: 20224 7H SH

PLCT - Ladder | Project Library:Libraryl " Global Library-Library2 |

@ Apply “LRestore |[] Export vI 71 Trans To Project Library I

info’ Fiesinfo Condition info

Library - Version
Library2 V.00
Name: fra :
Descrip - .
=Library_Description=
tion: = ot
Author: |[<Your_Company= Date: 2022F 7H 58

8-8-7-6 Compile
Click the source file in the project bar on the left, and click "compile" in the editing interface
on the right.

310

PLC1 - Ladder l/Project Library:Library1 VGlobal Library:LibraryE)/Sourc,eFile:FUNCH k HeadFilefuncl

Information Export Search Advance - || Compile | {1, Format Code = Switch Comment Code
1 JrEE= = = =

2 * FunctionBlockName: FUNC1 -

3 * Version: 1.8.8

4 * Author:

5 * UpdateTime: 2822-87-85 83:35:17

6 * Comment:

7 EEEEE ** ** ** J."
a8

] f**

1@ * [@summary

11 * [@param W

1z * [@param B

13 */

14 vold FUNCL(PINT165 W,BIT B)

15

16 #define SysRegAddr_HD D _HM M

17

118 |}

19

8-8-7-7 Set Global Library Directory

There are three methods to set the global library:

Method 1:Open the library management interface (please refer to 8-8-7-1. Library manager
for specific steps). If the global library directory has not been set, the prompt to set the global
library directory will appear.

Fath: I: :Path

Global library default path is missing, Meed set global library default
path is missing

.1

HEE

Method 2:In the process of creating a new global library, if the global library directory has not
been set, the same prompt as method 1 will appear. You can set the path in the "Change
Function Library Default Path™ pop-up window.

Method 3:Open "Library manger" interface,please refer to 8-8-7-1. Library manager and
click "Settings" - > "Global Library Directory" as shown below:

311

Function library manager form

Create Import Delete | Setting

Global directory .

EFR R —=t1 5]

I?-D DP:’-:-_] &

| T Defa .. V1.0.0 Your_Companys 2022/7/5 5:26:36
| T Libr... ¥1.0.0 Your_Companys 2022/7/5 §:32:13
& []6lobal. ..

—lLi]:-r. ..o Yoo Your Companys 2022/7/5 §:32: 16

Create Import Delete [|Setting

=5 7% == HiEEAT

L:I_I-|:| |:|Pro_'|ec

| —|Defa. ..o ¥i.on0 CYour_Company? 2022/7/5 5:26:36

| :lL:i.br. .. ¥l CYour _Company? 2022/7/5 8:32:13

é-Ell_li Change Function Library Default Path *
| User=iing et Dasktop | | Edit Fath |

Defanlt 0K Cancel

8-9 Application notes

In one Func Block file, you can write many functions, and they can be called by each
other.

Each Func Block file is independent, the function in other function block cannot be
called.

Func Block files can call C language library function in form of floating, arithmetic
like sin, cos, tan.

XC series PLC only support local variable, while XG series PLC support both local
and global variable. This makes C language Block more flexible and convenient.
Recommended usage of global variables:

(1) Use the soft component area instead of ordinary memory to store the data of
global variables.

The soft component space of PLC can be used as the global variable space, and the
security is guaranteed.

(2) Usage example

312

Take FP64 type as an example:

1 N O O T L O T T T e e
2 FunctionBlockName: FUNC1

3 Version: 1.8.9

4 Author:

5 UpdateTime: 2828/1/3 18:38:47

6 Comment :

7

g aid -

w0 declaration

11

12 woid FUNCL{ WORD W , BIT B)

13 B {

14 #define SysRegiddr HD_D_HM M

15

16 |Glohalv = (FPE4™)(&W[@]); | SN :
. initialization
18 | Test();

19 3}

20 woid Test()

ne{

22 #defin sRegAd D D HY M

23 using
24 FEaT JEAD | & -

25 |}

28 =

As shown in the figure above, the global pointer GlobalV is declared outside the function, and
then initialized in the main function to point to the space of the software component. The first
address of the space is the address where WIO0] is located. Finally, the value of the variable
can be obtained through pointer operation in other functions.

Take structure type as an example:

1 #ifndef STRUCT_H
2 #define STRUCT_H
3

4 typedef struct

5 B {

] INT1eU V;

7 FPE4 5;

8 JExStruct;

9

18 #endif

The declaration of structure

B TR RN AR R RS AR RN AR RN ERRRRA SRR AR
2 FunctionBlocklame: STRUCT

3 Version: l.8.8

4 Author:

H] UpdateTime: 2028/1/3 18:58:49

1 Comment :

7

B

9 #include "struct.h”

10 omrrTerer the header file contained declaration
11 ExStruct™ 5T;
12 void STRUCT({ WORD W, BIT B)

12 B {
14
15 #define SysRegAddr_HD_D_HM_M
16
- - : . aga . .
| pr =(estuctymiiel); | jnitialization
19 ST-3V = 18;
8 ST-»5 = 188.881;
21
22 Test(5T);
23 =
24 void Test{ExStruct™ ex)
% BEq{
26 #define SysRegAddr_HD_D_HM_M
27
2B *{INT16U*)BHD[B] = ex-»V; .
29 *({FPG4=)BHD[2] = ex-35; uS|ng
e T

Structure type global variable usage example

313

® XDPPro software v3.3 and later version keep C function library:
a ==
o fEl QR
o0 EICTE R

In this function block, user can call the C function directly:

—
KRl =

|

4

TCA Calenlation area of a circle

TCC Circumference calculation

TCRC CEC Check

TDSL Input data (short) from biz to small order
TOSS Input data (short) from small to largze order
TECA Calculation area of a circle

TECC Circumference calculation

TEEX Exponentiation caleulation

TEL1O Hatural logarithm

Hatural logarithm

TEFTH Fnown two right-angle sides and the hypotenuse demanded
TEFTR Fnown one right-angle side and hypotenuse nmeed to demand the other right-angle side
TEQE Quadratic equation (float]

TESTM Sum of memory 32-bit fleating data

TETF The product of memory data (float)

TEUE Quadratic equation [float)

TEX Exponentiation caleulation

TFA Factorial solwving

TITF Inverse trigonometriec functions

TQE Quadratic equation (short)

TSN Sum of memory 32-bit integer data

TTF The product of memory data (short)

ﬁﬁﬂﬁﬁﬁﬂﬁﬁﬁﬁﬂﬁﬁﬁﬂﬁﬁﬁﬁﬁﬁﬁﬁ
=
=

TUE Quadratic equation (short)

For example: click TUE, the function name will show on the project bar:

[;\1 Project
523 pLct
=] Caode
EE% Ladder
Id... Inskruction List

= Func Black
J TLE

] sequence Block

User can call it in the ladder chart editing window at any time.

314

8-10 Q&A of C language

(1)second macro definition for the coil

Some users have further extended the software component type after defining it, as shown in
the following code:

#define SysRegAddr HD_D _HM_M_X_Y

#define OUT Y[1]

OUT = 100;

The second macro definition of coils such as Y is not allowed because the reading and writing
of coil data is not simply a pointer, but through a function. In this case, the compiler cannot
handle it, resulting in an error.

(2)Use the value of the coil as the judgment condition

The user uses the value of the coil as the judgment condition of the if statement, as shown in
the following code:
if(X[0])D[0] =10;
This writing method will report an error during compilation because our compiler has made
an error during internal processing. It is recommended that you change the line, as follows:
if(X[0])

D[0] =10;

(3)Use DM
DM[0] is not supported at present. Only DW and FW double word operations are supported.

(4)An error is reported during compilation, and macro defintion color changes to black

This phenomenon is caused by full angle characters in the code. Full angle characters can be
cleared by using formatting.

(5)The C language function in the header file has no compilation function.

& X1 pLct - 278 [ss#e-HAND A | 5244 ADDING |
PLCA1 L
0 Es R |
EEQ YR ElRAT 1 #ifndef _HAND_A H
|dH &4 2 #define _HAND A H
i 3 #endif
- ms :
= REATASS 5 #define Home_speed 120880
. ¢ ADDING [#define AxisEnable 1
Lol INmL ;
‘—J R 9 B INT325 ADDINGS(int x , int y) {
fee v HAND_ A 18
_W 11 int max;
LD R 12 max=Ffabs(x)*-+Fabs(y)*";
[PR =
[mEH wd
[iaEhsR 16
S et e 17

315

There is no compilation function in the header file. Only the source file can be compiled.
The header file cannot be compiled separately.

(6)When two source files call the header file, you only need to write a declaration in one source

file. Write in both source files and compile correctly, but the download program is wrong.

Using #include "xxx.h" outside the function can be understood as including this header file
globally. There is no problem compiling a source file separately.

The function of the header file can be understood as: the compiler replaces #include "xxx.h"
with variables and functions declared in the header file during code preprocessing.

However, during the download process, multiple source files are compiled and linked. After
preprocessing, both source files have declarations of variables and functions in the header file.
Repeated declaration errors will occur during linking, and XDPpro is shown as a link error.
Suggestion:

Correctly include the header file where the header file content needs to be used, rather
than blindly include the header file directly outside the function.

ﬁ%iﬁiﬁﬁ ; ‘..ITI?'_CT:‘_C:'H.S'"-':! AU LNG
CRETRGHL 4
- 5
|c| ADDING 2
P hele] WML 7
[=y :
W] HAND_A
SR Exfc: an 11 void ADDING{ WORD W , BIT B)
- RAREEINES 12 H{
L0 A ASEEThES 13 ﬁdef"_m_e SysRegAddr_HD_D HM_M
----- [&St - Fancluds THAID_AD
R Sl s 16 INT325 MUL_A{INT325 r);
- = SR EAERTR 17
18 DW[12]= ADDINGS(-17,37);
19 DW[14]= MUL_A(1);
28
21
22 L3
23
24 [INT32S MUL_A(INT32S r) {
25
26 INT325 mas
27
28 mas=ADDINGS(-10,30)4+r;
' 29
-{Bo| BOYEER EI
N2 b T 3 er=ion .
2 FREIEEER 4 Author
SR B4 5 20819/12/13 9:24:36
i ie|c] ADDING & Comment
{ o helo INMTL 7
Lk B aaaaar s
E'—J HFHHF 9| #include "HAND A.h"
o HAND_A 18 void INITIL{ WORD W , BIT B)
-3 ERATRE 11 B {
A 2t B A 12 #define SysReghddr HD_D_HM_M
13 #include "HAND _A.h
" 14
""" T EE%E‘]E:H& 15 DW[12]= ADDINGS(-1,32);
----- B IfEthas 16 | }
= SRR 17
----- By
----- iRt
----- BT
-0 PLOBEE
i b vo

316

] e wmEm gO =1 4= T £ BT R R e IR T = 43

Sk B A A TR I <O e { P — o5
Del F5 FE sFB sFE F7 sFB sFF FB

|
Inz slns Del =De E F11 sF11 K12

L3

iV

I — —

Lre @ EEe -

—T_-EJ — B X | pLct - pE | sozis HAND A | B ADDING [ESclE-INITIL
_i.. RE I3 FE B &E
I e ;
i, S IBHRIE :
I3 EEThRae 2
i i B
_J ;LKI:;IL S #include "HAND_A.h"
wr HAND_A 18 void INITIL{ WORD W , BIT B) =i x
(51 e 11
- RS FEEREE 12 #define SysRegAddr_HD_D_HM|
P TR 13 AN EE RS RETESRE A,
- EREThAGH: E D[107~ ADDINGS(-); isTure:True Errinfo:, ErrCodeEnum:FuncBLink
- [IREE AR 16 o
== Yiﬁﬁ%ﬁﬁ‘fiﬁﬁﬁﬂ 17 i
R
MiEss= DI <
==
iR WL
D':\'i':\rE\'g':tan:np:iﬁi\ggﬁﬂﬁi\agg—ln':;\“;tjfglﬂgta\;f\[) .I\h.].ﬁns'lé\mztSB\PeruncBa’HAND_A.h:B muttiple definttion of ' ADDINGE"
LA Mmph18488\PriFuncBVADDING. o:D:\Program Files (x86)0{NJEUDPPro\TOOLXDARN/. ..\ tmp\16488\PriFuncB/HAND_A h:9: first defined here
8-11 Function Table
The default function library
Constant Data Description
_LOG2 (double)0.693147180559945309417232121458 Logarithm of 2
_LOG10 (double)2.3025850929940459010936137929093 Logarithm of 10
~SQRT?2 (double)1.41421356237309504880168872421 Radical of 2
Pl (double)3.1415926535897932384626433832795 Pl
_PIP2 (double)1.57079632679489661923132169163975 Pl1/2
_PIP2x3 (double)4.71238898038468985769396507491925 P1*3/2

String Function

Description

void * memchr(const void *s, int c, size_t n);

Return the first ¢ position among
n words before s position

int memcmp(const void *s1, const void *s2, size_t n);

Compare the first n words of
position s1 and s2

void * memcpy(void *s1, const void *s2, size_t n);

Copy n words from position s2 to
s1 and return s1

void * memset(void *s, int c, size_t n);

Replace the n words start from s
position with word c, and return to
position s

char * strcat(char *s1, const char *s2);

Connect string ct behind string s

char * strchr(const char *s, int c);

Return the first word ¢ position in
string s

int strcmp(const char *s1, const char *s2);

Compare string s1 and s2

char * strcpy(char *s1, const char *s2);

Copy string sl to string s2

317

Double-precision math
function

Single-precision math
function

Description

double acos(double x);

float acosf(float X);

Inverse cosine function

double asin(double x);

float asinf(float x);

Inverse sine function

double atan(double x);

float atanf(float x);

Inverse tangent function

double atan2(double v,
double x);

float atan2f(float y, float
X);

Inverse tangent value of
parameter (y/X)

double ceil(double x);

float ceilf(float x);

Return the smallest double
integer which is greater or
equal with parameter x

double cos(double x);

float cosf(float x);

Cosine function

Hyperbolic cosine function,

double cosh(double x); float coshf(float x); COSh(X)=(e"x+eN(-X))/2
double exp(double x); float expf(float x); Exponent (e”x) of a nature data
double fabs(double x); float fabsf(float x); Absolute value of parameter x

double floor(double x);

float floorf(float x);

Return the largest double
integer which is smaller or
equals with x

double fmod(double X,
double y);

float fmodf(float x, float y);

If y is not zero, return the
reminder of floating x/y

double frexp(double val, int
_far *exp);

float frexpf(float val, int
_far *exp);

Break floating data x to be
mantissa and exponent X =
m*2/°exp, return the mantissa
of m, save the logarithm into
exp.

double Idexp(double x, int
exp);

float Idexpf(float x, int
exp);

X multiply the (two to the
power of n) is x*2/n.

double log(double x);

float logf(float x);

Nature logarithm logic

double log10(double x);

float log10f(float x);

logarithm (log10x)

double modf(double val,
double *pd);

float modff(float val, float
*pd);

Break floating data X to be
integral part and decimal part,
return the decimal part, save
the integral part into parameter

ip.

double pow(double x, double

y);

float powf(float x, float y);

Power value of parameter y
(x%y)

double sin(double x);

float sinf(float x);

sine function

double sinh(double x);

float sinhf(float x);

Hyperbolic sine function,
sinh(x)=(e"x-e"(-x))/2

double sgrt(double x);

float sqrtf(float x);

Square root of parameter X

double tan(double x);

float tanf(float x);

Tangent function.

double tanh(double x);

float tanhf(float x);

hyperbolic tangent function
tanh(X)=(e”x-e"(-x))/(e"2+e"\(-

X))

The using method of the functions in the table:

float asinf(float x);

float asinf: float means the return value is float format;
float x: float means the function formal parameter is float format. In actual using, it do not

need to write the float. See line 14 in the following example:

318

] void ZHENGEIAN| WORD W

10 {

11 int =;

12 float =,v,z;

13 *x=FW[DO] ;

14 v=azinf(x);

15 z=180%v/3.14159;
16 a=(int) z;

1557 WL2]=a;

15 i

EIT E)

Flash register operation special function library

Flashregister operation special
function

Explanation

flash_copy (void *dst, void *src,
size tlen);

A function that copies data to a flash register.
DST: the starting address of the target register
copied to;

SRC: source data address;

Len: number of bytes copied;

flash_move (void *dst, void *src,
size tlen);

the copy bytes of the flash register,if the target area and
the source area overlap, flash_ Move can ensure that the
bytes of the overlapping area are copied to the target area
before the source string is overwritten, but the source
content will be changed after copying. However, when
the target area does not overlap with the source area, it is
same to the function of flash_copy.

DST: the starting address of the target register copied to;
SRC: source data address;

Len: number of bytes copied;

flash_set int8 (void* dst, int8 data);

flash_set_int16 (void™ dst, int16
data);

flash_set_int32 (void™ dst, int32
data);

flash_set_int64 (void* dst, int64
data);

flash_set_float32(void* dst, float32
data);

flash_set_float64(void* dst, float64
data);

Make some type of assignment to the flash register.
DST: the starting address of the target register;
Data: different types of data;

Take the copy data and assignment of flash register as an example to illustrate the use of

functions in the function table:

Example 1: Copy data to Flash register FD100

flash_copy (void *dst, void *src, size_t len);

The Void in the flash_copy function represents the parameter type. In actual use, there is no
need to write void. See line 13 in the following example:

319

9 vold FUNCL1{ WORD W , BIT B)
=
11 #define SysRegAddr_HD D _HM_M_FD_SFD

12 | char a[8] = {'a', 'b', 'c', 'd", 'e', 'f', 'g', 'h'};

13 | flash_copy (&FD[1@8], &a, sizeof(a));//{EFsizecf(a)iTEafIEE;
14

15 | }

16

Example 2: set value in Flash register
flash_set_int16 (void* dst, int16 data);
The advantage offlash_set_intl6compared to flash_copy:
If using flash_copyto set value in flashregister. It is very inconvenient to use.
int temp_val = 1000;
flash_copy(&FD[1000], &temp_val, sizeof(temp_val));
If using flash_set:flash_set_int32(&FD[1000], 1000);
See line 13~18 in the below example:

9 wvoid FUNCL{ WORD W , BIT B)

18 [{
11 #tdefine SysRegiddr HD D HM ._FD SFD
12 //flash_set EFIFEEIER =H
13 flash_set_intd (&FD[1e4], 8);
14 flash_set intle (&FD[1es], 16);
15 flash_set int32 (&FD[1e88], 32);
18 flash_set inte4 (&FD[112], &4);
17 flash_set flocat32 (&FD[128], 32.32);
18 flash_set floated (&FD[122], B4.64 };
19
20 | }
21 =
Note:

(1) flash_ move function requires the support of the PLC firmware version of the lower
computer (firmware version: v3.7.2 firmware date: 20210528).

(2) The flash register can be written about 1000000 times, and each write is the erasure of the
whole flash register, which is time-consuming. Frequent writing will cause permanent
damage to the flash register. Therefore, it is not recommended that users write frequently.
Carefully use the power on normally on and oscillation coil (e.g. SM0, SM11) as the driving
conditions.

320

9 Sequence BLOCK

This chapter mainly introduces sequence block instruction and the application.

Sequence Block instruction:

Mnemonic | Function Ladder chart Chapter

Sequence Block

SBSTOP | Pause BLOCK | [sBsToP| st | s2 | 9-6-1
SBGOON Sﬁct)oceéecute —i—{sBGOON | s1 | s2 | 9-6-1

9-1 Concept of the BLOCK

Sequence block whose brief name is BLOCK is a program block to realize some functions.
As a special flow, all instructions in the block are executed in order, which is the biggest
difference with general processes.

BLOCK starts from SBLOCK and ends with SBLOCKE, and programmers can write
instructions in the BLOCK. If one BLOCK contains multiple pulse output instructions(or
other instructions), then pulse output instructions will execute in accordance with conditions
meet order; And meanwhile the next pulse output instruction will not execute until the current
instruction is over.

The XD3, XDM series PLC supports multiple BLOCKs*,

A complete BLOCK structure is shown as below:

SBLOCKn = = = P BLOCK start

Instruction

Pulse output
Read write module

— = = p All instructions in

G Cf)d_e _ BLOCK is executed in
Wait mstruc_tlon order
Command list

SBLOCKE = — =— p BLOCK end

321

Note:

> 1: for XG series PLC, a maximum of 100 blocks can be written in the program, but a
maximum of 8 blocks can be run at the same time.

» 2: when the trigger condition of the block block is triggered by the closing of the normally
open coil, it will be executed downward from the top of the block in turn. After executing the
last command, it will immediately restart the execution from top to bottom. When the trigger
condition is disconnected, the block will not stop immediately, but complete the last scan and
stop after the unexecuted program is executed.

» 3: when the trigger condition of the block is triggered by the rising edge of the coil, each
time it is triggered, the sequential function block block will be executed from top to bottom,
and will not be executed circularly.

9-2 Call the BLOCK

In one program file, it can call many BLOCK; the following is the method to add BLOCK in
the program.

9-2-1 Add the BLOCK
Open XDPPro software, right click the sequence block in the project bar:

Project 1 x ﬁ
E Project —
5-[3] PLCT

E-h] Code 0
EE% Lagder | L

=3 Function Library

...... Default Library
.. Config Block

e H Sequence Blork
..... = comment Editor [Add Sequence Block

..... B Free Monitor H

Click the command ‘add sequence block’, the following window will jump out:

322

Edit Sequence Block 1 b4

Comment: Sequence Blockl

. Insert » Edit Delete | Upwards Downwards

Index Skip Comment Output

[0K]l Canceal |

L

You can edit the BLOCK in the window, Upwards/Downwards are used to change the
position of instructions in the block.
Click ‘insert’ button, some instructions list under the menu:

Edit Sequence Block 1 .

Comment: Sequence Blockl

‘|Insert ~| Edit Delete | Upwards Downwards
Common ltem

| Pulse ltem
Wait ltemn
Read/Write Module(FROM,/TC)
G ltemn
Read/Write 5D Module

utput

[0K] | Canecel |

323

Take ‘Pulse Item’ for example:

'Pulse Config >
[skip \:I Comment: Fulze Config
data start addreszsz:; | DO uzer params address: nioo zystem params. | Kl output: | ¥0

mode: relat: | ctart execute sectiom count: | O Config

i Add Delete pic1- pulse Set

i Config = Delete | Initialize the | Configuration wizard

Faram SFD900 bitl Yalue

¥0 axiz—Common—Farameters settinz—Fulze direction logic [positive logic

Y0 axisTCommon—Farameters setting—enable soft limit dizable

Y0 axizCommonFarameters settingmechanical back to... |negative

Y0 axiz—ommon—Farameterz settingMotor operating mo... [Fosition Mode

Y0 axisTCommonFarameters settingFPulse unit pulse mumber
uzed space: pgs [I0 axisCommon—TFParameters settingFulse tupe One—way pulse

Y0 axiz—Common—Farameters settingInterpolation coor... [Croszs coordi. ..

¥0 axisLommonpulse send mode complete mode

¥0 axisTommon—Fulse num (1) 1

Y0 axiz—LCommon—0ffzet (1) 1

Read Frem FLC Write To FLC [1):4 Cancel

After click ‘OK”’, you will find information in the configuration:

Edit Sequence Block 1 et

Comment: Sequence Blockl

. Insert - Edit Delete | Upwards Downwards

Index Skip Comment Output
1 Ful=ze Confiz FLSE DO D100 E1 ¥0

0K Cancel

Click ‘OK’, the following instructions are added in the ladder:

324

| SBLOCK Sequence Block1 |

- FILSE DO D100 Ki vl

S SBLOCKE L

Meantime, a new sequence block is added in the left of the project bar:
E Project
5.-[1] PLC
_EEQ Code
; E'Tgi Ladder
—|:| Function Library
-[E2] Default Library
|:| Config Block

=] H Seguence Block

...... ... =] 1 Sequence Block!

9-2-2 Move the BLOCK
If you want to move the BLOCK to other place, you have to select the original BLOCK and
delete it (select all, then delete):

0

Do D100

Move the cursor to the new place, and then right click the BLOCK and select ‘add to lad’:

1 PLCA =
Ehﬁg Code 0 i
E iLadder T

= |:| Function Library g

...... ..[p=] Default Library
...... |:| Config Block

= H Seguence Block :
b 1 Sequence Bloslkd
-] Comment Editor |_ Add To Lad "
~-[E} Free Monitor Copy Sequence Block
5 Data Monitor Delete Sequence Block

-[iE Set Reg Init Valug M '

Now the BLOCK is moved to the new place:
325

Tl 4 Soo e I

9-2-3 Delete the BLOCK

You can select the called BLOCK and delete it. If you want to completely delete the BLOCK,
right click the function block and select ‘delete sequence block’. After this operation, you
can’t call this BLOCK any more:

HH Seguence Block ‘

3 ‘

...... =
3 comment Editor Add To Lad
g Free Monitar Copy Sequence Block

& Data Monitor Delete Sequence Block

= I S TR

9-2-4 Modify the BLOCK

There are two methods to modify the BLOCK.
(A) Double click the start/end segment to modify the BLOCK in general:
| |

] [sBLOCK Sequence Block]

—— Y TR v

2 [SELOCKE H

Edit Sequence Block 1 et

Comment: Sequence Blockl

. Insert - Edit Delete | Upwards Downwards

Index Skip Comment Output
1 Fulze Config FLSE DO D00 K1 ¥O

326

(B) Double click the middle part to modify :

[sBLOCK Sequence Blockl |
I PLER DO 0100 K1 N0
S SELOCKE F
Pulse Config ®
D Skip \:l Comment: BTN Eans
|
data start address: | DO user params address: D100 system params: | Kl output: | I0
mode: relat: v | start execute section count: | O | Config |

: Add Delete | Upwards Downwards

frequence pulze count jump register

used space: D0-09, 1100-D105 | Read From FLC | |l'ﬁ'rite Ta PLC| [0K] | Cancel |

9-3 Edit the instruction of the BLOCK

9-3-1 Command item

Use ‘command item’ to edit the program:

Edit Sequence Block 1 p4 .

Comment: Sequence Elockl

:|Insert -| Edit Delete | Upwards Downwards
| Commaon ltem

Pulse Item E I0 D100 K1 ¥0
Wait ltem

Read/Write Module(FROM,/TO)
G Item
Read/Write SO Module

[0K] | Cancel |

327

An ‘instruction list’ will jump out after click the ‘command item’:

Instruction List =

[]&kip Comment: Instruction List

MOV IO D1
MOV 10 D20
MUL I1 D20 D2

caned

Users can add instructions in the frame.

Skip: to control the stop and run of the instructions. If you select skip and input control coil in
the frame, then when the control coil is ON, the command will not be executed. If not select,
the default action is execution.
Comment: to modify the note for the instruction.
Note:

(1) Skip condition only can be M or X, cannot be other coils.

(2) The instruction list only support the intructions in chapter 3 and 4. (the instructions in
chapter 3-5, 3-11, 3-13, 3-14, 4-3 are not supported)

Instruction List =

[] skip Comment: |In5tructi-:-n List

MOY Do Di
MO¥ D10 Dz0
MUL T1 D20 D21

Cancel

Click ‘OK’, the ladder program will change as the following:

1 ! SELOCK Sequence Block1
MO

2 —| |—| Instruction List

5 L] SELOCKE

4

328

Note: We can add multiply instructions in one BLOCK and use ‘Skip’ as every instruction’s

execution condition.

In the above figure, the command segment is not expanded in the ladder diagram, but its
annotation can be modified according to the function of the segment, as shown in the

following figure:

Instruction List -
[+] Skip |M]:I | Comment: | [MUL
MOV DD D1 Y
MOV D10 D20
MUL D1 D20 D21
W

[DK

I | Cancel |

The modified block phrase has also changed accordingly, as shown in the following figure:

{ SBELOCK Sequence Block1
T a——
I I [MUL
1 SBLOCKE
9-3-2 Pulse Item
Open the ‘pulse item’ in the same way:
Pulse Config *
Dskip | Comment: Fulze Config
data start addressz:; | D0 user params address: 100 system params: | Kl output: | Y0
mode: relat: v | start exeoute zection count: | O Confiz
: Add Delete | Upwards Downwards |
frequence pulse count Jump register
1 1000 1200 il
gz 1200 2000| b}

used space! [0-T23, D100-T103 Read From PLC

Write To FLC 114

Canzel

329

In the following BLOCK, we add two impulse instructions:

] | SELOCK Sequence Block

4‘ PLER DD Dioo K1 W0

—‘ FLSR D0 oio0 K1 hi')

L] SELOCKE

9-3-3 Wait Item

‘Wait Item’: to wait coil flag or timer bit.

Open ‘Wait Item’ in the same way. There are two waiting modes: flag bit and timer wait.
(A) Flag bit

Wait Config .

[skip Comment: Walt Config

O Wait Coil Flaz: SEMO|

[:] Wait T Timer: Unit: 1 ms Time:

Concl

SEM corresponding ladder diagram is as below:

M30
— POST SEMO

M30

H}—{ OUT SEMO

(B) Timer wait

Wait Config pd

[]skip Comment: Wait Config

() Wait Coil Flaz: SEMD

O Wait T Timer: Unit: 1 ms ~ Time: KLOD|

(C) Corresponding ladder diagram:

330

b0
_m [=BLOCK Sequence Blockl |

| Wall K100 Kioo F

S SELOCKE =

Note: Do not add normal coil after WAIT instruction in XG series PLC sequence BLOCK,
and add XG1, XG2 series PLC special signal SEM bit(SEM0~SEM31); SEM cannot be
controlled by set or reset. It can only be set by POST instruction and reset by WAIT SEM
instruction. Or output via OUT instruction. The difference between them is that the POST
command needs to be triggered by the pulse edge to keep the state of SEM; the OUT
command needs to be triggered by the normally open coil, and the SEM is reset when the
triggering condition is disconnected.

9-3-4 Module Read and Write (FROM/TO)instruction

This item is used to read and write data between PLC and modules, and the operate panel is as

below:
1#read

Read/Write Module -

[] skip Comment: FReadWrite Module

() Read module € ¥rite module Type: Module e

Module E10000 ™ Module address: EQ
Count: it FPIC address: M1i0
0K l Cancel

FROM\TO instr-uction can be selected from pull-down list:

M
_m | SBLOCK Sequence Block1

U
| [FROM KIOOOOKD K& M0]
— [70 KIDMOKD K o0 H
L SBLOGKE H

331

9-4 Running form of the BLOCK

1. If there are many blocks, they run as the normal program. The block is running when the
condition is ON.
(A) The condition is normal ON, normal OFF coil

M1

SBLOCK Sequence block 1
M2

SBLOCK Sequence block 2
M3

SBLOCK Sequence block 3

|
Scanning period 1 ' Scanning period 2 Scanning period 3
|
i
M1 |
| |
i
|
M2
|
M3 !
|
Blockl Blockl, Block2 Block1, Block2, Block3

Note: When the program in the BLOCK is not executed and the triggering condition M is
disconnected, the BLOCK will not stop immediately, but will complete the last scan, and will
stop after the rest of the program has been executed.

(B) The condition is rising or falling edge of pulse

M1

}T} SBLOCK Sequence block 1 | |
M2

}T} SBLOCK Sequence block | |
M3 ’

m SBLOCK Sequence block

3

332

When M1, M2, M3 is from OFF to ON, all these blocks will run once.

2. The instructions in the block run in sequence according to the scanning time. They run one
after another when the condition is ON.
(A) Without SKIP condition

i |
—1 | SBLOCK Sequence BLOCK 1

—| FL3R HDO HDI00 Kl Y0 |_
—|PLSR HD200 HD300 Kl 1f1|—

FROLI ED EO Eé MO —

—| SBLOCKE |—

The instructions running sequence in block 1 is shown as below:

1
Feanning periodijScanning perisd® Scanning u:riods"scannin: perded § Scanning nﬂ-icdii

BLOCK condition
-1 i= OFF and all

FLER %0 FIIER ¥1 FEOM the sequence
insructions are
finizhed running.

Blockrunning

(B) With SKIP condition

Iz
| | SBLOCK Sequence BLOCKL

—|IIUIB|—| FLER HDO HD100 K1 %0 |—

14
—{ - PLSR HD200 HD30 Ki ¥1 [

I
. FROM KD KO K& ML0

—| SBLOCKE |—

Explanation:

A) When M2 is ON, block 1 is running.

B) All the instructions run in sequence in the block.

C) M3, M4, M5 are the sign of SKIP, when they are ON, this instruction will not run.

D) When M3 is OFF, if no other instructions use this YO pulse, PLSR HDO HD100 K1 YO0
will run; if not, the PLSR HDO HD100 K1 YO will run after it is released by other instructions.

333

E) After YO pulse sending completed, check M4. If M4 is OFF, check Y1 block, if M4 is ON,

check M5. If M5 is OFF, module commmunication will run.

9-5 BLOCK instruction editing rules

In the BLOCK, the instruction editing should accord with some standards.
(1)Do not use the same pulse output terminal in different BLOCK.

NO(>)

YES(®Y)

Mo
— |——| SBLOCE Sequence BLOCKI{—
M1

||| AR HDO HDIOD K1 Y0 |-

B

0
— |——| SBLOCE Sequence BLOCKE{—

—| FLiE HDO HDIM El Y0 |—
_| SELOCKEE |-

SBLOCKE |-

it 1]
—] I——| SELOCKE Sequence BLOCEL |—

—|M|1—| FLEE HDO HDIM El1 ¥0O |—

-

MO
—] |——| SBLOCKE Sequence BLOCEZ |—

—| FLSR HDO HDIO Kl Y1 |_
-

SBLOCEE |_

SELOCKE |_

(2)Do not use the same pulse output terminal in BLOCK and main program.

NO(»)

YES(Y)

D
— F———FLSR. HDO HDIO0 Kl YOH
O

_|

SELOCK Sequence BLI:ICKll_

FLSE. HDO HDi00 E1 YEI|—

SELOCKE |—

M0
—| F———FLSR HDO0 HDIO0 KI ¥OH
151

_|

SBLOCE Sequence BLI:ICK1|_

FLSE. HDO HD100 K1 ‘f’l|—

SBLOCKE |—

(3)There only can be one SKIP condition for one BLOCK instruction.

NO() YES(®Y)
I iy I
f SBLOCE Sequence BKLOCKL f SBLOCK sequence RLOCKL
Ml L2 Il
| — —{PLSE. HDO HD1M K1 %0 | ——{PLSE. HDO HDIM K1%0
— SBLOCEE — SBLOCEE

334

(4)The SKIP condition only can use M, X, can not use other coil or register.

YES(Y)

T

N2 [D10]

SBLOCE. Sequence BLDEEII—

—[PSR D0 Dl Kivo H

—[FLSF. AD0 HDIO0 K1 VO-

i

SBLOCE. sequence BIJ]EKII—

u
—[FLSK D0 Diw K170 H

WD
—{FLSR._HDU HDIM KI Y0

(5)The output instructions cannot be CNT_AB(CNT), PWM.

NO(») YES(Y)
MO 0
— SELOCESequence BLOCKIH — SBLOCKsequence BLOCKIH

H3CO

M1
—{CHT AE

M2
—rwM Koo Do Yo H

oo H

SELOCEE H

i1
| FLSE D0 DI00 K1¥0 [

Il
F——FLSE. HDO HDI00 E1 Y0

SBLOCEE H

(6)BLOCK is not recommended to put in the STL, because if one STL ends, while the
BLOCK doesn’t end, then big problem will happen.

NO(») YES(Y)
STL SO g
[STL S0 N | SBLOCK H
SMo ‘
it | SBLOCK H - [FROM KO KL K5 DI100H
—[{FROM KO0 K1 K5 D100H WAIT K1 K50
WAIT K1 K50
— H — PLSR HDO HD100 K1Y0 H
—{ PLSR HDO HD100 K1Y0 N SBLOCKE i
\ SBLOCKE H | |[sTL so
M100 Y0
I) '\’;'1;00 fY O)
STLE

(7)Label Kind type cannot be used in the block

Sign P, I cannot be used in block. Even they can be added in block, but they do not work in

fact.

335

9-6 BLOCK related instructions

9-6-1 Instruction explanation

|Stop running the BLOCK [SBSTOP]

1)Summary
Stop the instructions running in the block
[SBSTOP]
16 bits SBSTOP 32 bits -
Condition | NO,NC coil and pulse edge Suitable XG1, XG2
types
Hardware | K2 and K3 modes have version Software | V3.4 and up
requirements
2)Operands
Operand | Function Type
S1 The number of the BLOCK 16bits, BIN
S2 The mode to stop the BLOCK 16bits, BIN

3)Suitable component

Operan Word soft elements Bit soft elements
ds System Consta | Module System
nt
DIF|T|C|D|D|D|D| KH 1| Q| X|Y|M|S|T|C| Dn
DI DID|X|Y|M|S D| D m
S1 ° °
S2 °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M,HM,SM; Sincludes SHS; T
includes T,HT; Cincludes C, HC.

Function

SBSTOP‘ K1 \ KO \

.

S1 is the block number of sequence block. The block number is unique and cannot be
changed. It can be viewed in the left engineering bar as follows.

= E Ce

336

------ [Cconfig Block

B et e

quence Block

Sequence Blockl
Eequence Block2
Ceguence Block3

[Iy i CT

S2 is the mode for BLOCK stop, operand: KO, K1, K2, K3

KO: stop the BLOCK slowly, if the pulse is outputting, the BLOCK will stop after the pulse
outputting is finished.

K1: stop the BLOCK immediately; stop all the instructions running in the BLOCK.

R Execute
SB%F OP
frequency
\\
\
\
Kie —> KO
\
\\
\
0 1

K2: Destructive slow stop BLOCK, that is, when the pulse is being sent, the SBSTOP
condition holds, then the pulse will slow down along the slope, without to use with the
SBGOON instruction, so the remaining instructions will not be executed. After executing this
instruction, the BLOCK can be restarted.

K3: Destructively stop block immediately, that is, when the pulse is being sent and the
SBSTOP condition is established, the execution of the pulse instruction in block will be
stopped immediately, which does not need to be used with the SBGOON instruction, so the
remaining instructions will not be executed. After executing the command, the block can be
restarted. (Note: K3 mode is only supported by firmware version XG1 of v3.5.3 and above or
firmware version XG2 of v3.3y and above.)

|Continue running the BLOCK[SBGOON] |

1)Summary
This instruction is opposite to SBSTOP. To continue running the BLOCK.
[SBGOON
16 bits SBGOON 32 bits -
Condition | Pulse edge Suitable XG1, XG2
types
Hardware | - Software | V3.4and up
2)Operands
Operand | Function Type
S1 The number of the BLOCK 16 bits, BIN
S2 The mode to continue running the BLOCK 16 bits, BIN

337

3)Suitable component

Operands Word soft elements Bit soft elements
System Consta | Module System
nt
DF| T|C|D|D|D|D| KH | Q| X|Y| M|S|T|C| Dn
DID|D|X|Y|M]|S D| D m
S1 ° °
S2 °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M,HM,SM; S includes S;HS; T
includes T,HT; C includes C, HC.

Function

3 (1) (=2
%TM SBGOON‘ K1 \ KO \

S2 is the mode to continue running the BLOCK. Operand: KO0, K1.

KO: continue running the instructions in the BLOCK.

For example, if pulse outputting stopped last time, SBGOON will continue outputting the rest
pulse;

K1: continue running the BLOCK, but abandon the instructions have not finished last time.
Such as the pulse output instruction, if the pulse has not finished last time, SBGOON will not
continue outputting this pulse but go to the next instruction in the BLOCK.

This instruction only applies to PLSR instructions in BLOCK, and can only send the
remaining pulses for interpolation instructions, which can not be skipped.

9-6-2 The timing sequence of the instructions

SBSTOP (K1 K1) +SBGOON (K1 K1)

338

1 mBLOCEK Sequence BLOCK 1 |

| PLZE HDO HDIOD K1 YO |-

SELOCKE -
I
1l SESTOF K1 Kl M
I3
! [SBEGOCN KI Kl |

| . . | . . |

scanning pericd 1'scamnning period Eiscmin: pericd 3i=cm1n: period di:i::mmn: pericd 5;

1 1 1 1

> g g i g

Condition MO i i i i

Fy ! ! ! !

| | | |

1 L 1 1

| | | |

1 1 1 1

Condition M2 | | |

A | | |

| | |

1 1 1

| i | |

! | Condition M4 ! |

| I ' I 1

I | T I | I

- I I i | I |

) - | L | |
1

FLS YO [| i ! |

—_ | il | |

i wge i 1

| | | |

When MO is from OFF—ON, run “PLSR HDO HD100 K1 Y0 in the BLOCK to output the
pulse;

When M2 is from OFF—ON, the BLOCK stops running at once;

When M4 is from OFF—ON, abandon the rest pulse.

SBSTOP(K1 K1)+SBGOON(K1 KO0)

339

L0
H I mBLOCE. Sequence BLOCE 1 |—

| PL3E HDO HDIOD E1 ¥ |

i i i PLS YO
i i i

|

[SELOCKE -

e
M SESTOF) Kl

IS
I [SBGOCH KI K0
! ! ! ! ! !
_Qcanning period 1 Scanning period 2 | Scanning period 3 | Scanning period 4 Scanning period 5 |
| ! | | ! |
i ' " " " "
fondition MQ_ | | | |
| i i i i
1 ! i i i i
Condition M2 ! ! ! |
1 | | |
' ! : ! !
! | cmamrn M3 | |
| : A : :
» | ! ! ! !
| I I i | i i i
v VoL, X ; ;
PLS YO l || i i
| | T T & i i
i i
i i

When M0 is OFF—ON, run ‘PLSR HDO HD100 K1 Y0’ in the BLOCK to output the pulse;
When M2 is OFF—ON, the BLOCK stops running, the pulse output stops at once;
When M3 is OFF—ON, output the rest pulses.

SBSTOP(K1 K0)+SBGOON(K1 K1)

340

D
il

IvI1

mBLOCE. Sequence BLOCE 1

PLSE HDO HDIOO E1 %0

=4

wBLUCEE

mBETOR El ED

i
114

1

RBEOCH Kl Kl

Scanningperio ﬂ.l:Sca.min:nerioﬂ.E: Scanningperic ﬂ.?lqscamin:nerioﬂ.dis canninFperio r15=
| | |
1 1 1
> > > > >
Dondition MO : :
ry 1 1
| |
- i i
. . | |
O:-:undltll:un Ml i
| |
1 1
1 | 1
| : | 1
! , | Condition M4
|

I | I I
| ! | |
“ T i B
. | |
FLS Y0 ; !
: | o
| | |

When MO is from OFF—ON, run ‘PLSR HD0 HD100 K1 YO’ in the BLOCK to output the

pulse;

When M1 is from OFF—ON, stop running the BLOCK, the pulse will stop slowly with slope

When M4 is from OFF—ON, abandon the rest pulses.

SBSTOP(K1 K0)+SBGOON(K1 KO)

SELOCE. Sequence BLOCK 1 |4

PLER HDO HD1OO K1 ¥0 |—

cBLOCEE

I

f |
]
—

o

i |

K

i |

I_
“BATCP Kl ED |—
I_

SBOOCH El Al

341

b

. . 1 . . | . . 1 . . 1
SCANNINE per:l.odz SCANNINE per:l.ods SCANN1InE I-‘El'lﬂ'dd s=canning I‘ErlﬁdS
1 1 1 i

scamning pericdl

. » » » | >
Condition M0 | : : , ,
& i i i i
— | | | !
1 1 1 1 1

p::undi'tinn]'|'[1| | ! I

l & l l !

| | | i

! ! ! !

: : Condition M3 : :

| | fl | i

- | | | i | i
I o I - I I

PLS YO | N | |

[I el 1 1

i i i i

FLS ¥0O

When MO is from OFF—ON, run ‘PLSR HD0 HD100 K1 Y0’ in the BLOCK to output the
pulse;

When M1 is from OFF—ON, suspend running the BLOCK, the pulse will stop slowly with
slope;

When M3 is from OFF—ON, output the rest pulses.

Please note that by the SBSTOP stops the pulse with slope, there may be still some pulses; in
this case, if run SBGOON K1 KO again, it will output the rest of the pulses.

9-7 BLOCK flag bit and register

1. BLOCK flag bit:
Address | Function Explanation

SM300 | BLOCKUI running flag

SM301 | BLOCK2 running flag

SM302 | BLOCKS running flag 1: running

0: not running

SM399 | BLOCKZ100 running flag

2. BLOCK flag register:
Address | Function Explanation

spaog | BLOCKI running instruction | g/ 5o e this value when

monitoring

SD301 BLOCK2 running instruction

342

SD302 BLOCKS running instruction

BLOCKZ100 running
instruction

SD399

If GBLOCK is used, it will occupy SM399 and SD399.

343

10 Special Function Instructions

This chapter mainly introduces PWM (pulse width modulation), FRQM, precise timing,
interruption etc.

Special Function Instructions List:

Mnemonic | Function Circuit and soft components ((;rhapt
Pulse Width Modulation, Frequency Detection
Output pulse with the
PWM specified duty cycle and HH PWM\ 51\ S2 \ D \ 10-1
frequency
FROM Fixed pulses frequency }HH{ FRQM| st | D [s2 | 83 | |10
measurement
Time
STR Precise Time }—H—' STR| D1 | D2 | 10-3
Interruption
. El
El Enable Interruption ‘ 10-4-1
DI Disable Interruption ‘ 10-4-1
IRET
IRET Interruption Return ‘ 10-4-1

10-1 Pulse Width Modulation [PWM]

1) Summary

Instruction to realize PWM pulse width modulation

PWM pulse width modulation [PWM]

16 bits - 32 bits PWM

instruction instruction

execution normally ON/OFF coil suitable XG1

condition models

hardware - software -

reguirement reguirement

2)Operands

Operands | Function Type

S1 specify the duty cycle value or soft component’s | 32 bits, BIN
ID number

S2 specify the output frequency or soft 32 bits BIN
component’s ID number

D specify the pulse output port bit

344

3)Suitable Soft Components

Operan Word soft elements Bit soft elements
ds System Consta | Module System
nt
DIF|T|C|D|D| D|D KH I Q| X|Y M|S|T|C| Dn
DID|ID|X|Y|M|S D| D m
S1 o o | o | o °
S2 ol o | o | @ °
D °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M,HM,SM; S includes S;HS; T
includes T,HT; Cincludes C, HC.

Function and Action

G (=) (o)

X0
] PWM \ K100 \ D10 \ YO \

Duty cycle n: 1~65535.
Output pulse f: 1~100KHz
XD series PLC PWM output need transistor type terminal:

PLC model PWM terminal
XG1-16T4 YO0, Y1,Y2,Y3

® Duty cycle of PWM output =n /65535>100%

® PWM use the unit of 0.1Hz, so when set S2 frequency, the set value is 10 times of the
actual frequency (10f). E.g.: to set the frequency as 72 KHz, and then set value in S2 is
720000.

® \When X0 is ON, output PWM wave; When X0 is OFF, stop output. PMW output doesn’t
have pulse accumulation.

—
In the left graph:
TO=1/f
E— t/T0=n/65535

Note: it needs to connect 1K ohm amplification resistor between output terminal and common
terminal when using PWM instruction.

345

Example

A

There is a LED drived by DC24V. It needs to control the brightness of the LED. In order to
decrease the power loss of wave collector, turn ON the switch at the moment it is OFF, then
turn it OFF. This process will cycle. Connet a transistor between the power supply and LED.
The pulse signal will input from the transistor base terminal. The current between base and
emitter is pulse. The LED input voltage is proportional to the duty ratio. The LED input
voltage will be changed by changing the duty ratio. There are many methods to change the
value. The normal way is pulse width modulation (PWM) which means only changing the ON

—

brightness 100% start
e

@ @ @

brightness 25% brightness 50% brightness 73%

s @y @

——

_—

nr

holding time but not changing the ON frequency.

This example applies the PWM technology to the LED brightness adjustment. The controller
can accpet 24V PWM control signal. The brightness range includes 25%, 50%, 75%, 100%.

The brightness is controlled by the PWM duty ratio.

Element explanation:

PLC Explanation Mark
component
X0 Start button, X0 is ON when pressed.
X1 Stop button, X1 is ON when pressed.
X2 25% brightness button, X2 is ON when
pressed.
X3 50% brightness button, X3 is ON when
pressed.
X4 75% brightness button, X4 is ON when
pressed.
X5 100% brightness button, X5 is ON when
pressed.
HDO PWM duty ratio register
HD2 PWM frequency register Defaulted
100Hz

Program:

346

SM2

N | DMOV K1000 HD2
X0
M | MSET MO M1
X1
0 | DMOV KO HDO

. ZRST MO M1

MO X2 X3 X4 X5
— ‘7/1/}’—/1/}’—/1/}’—‘ DMOV K16383 HDO
X2 X3 X4 X5

{4+ DMOV K32767 HDO

X2 X3 X4 X5
44— DMOV K49151 HDO

X2 X3 X4 X5
S s 1 e 4 ’—‘ DMOV K65535 HDO

M1
| [PWM_ HDO HD2 YO

1 [1 T[T T T [T T

Program explanation:

1.

N o g kM~ owbd

HDO will control the LED voltage. The voltage = 24*HD0/65535, pulse output frequency
is 100Hz.

Press start button, X0 is ON, M0, M1 is ON, the LED brightness adjustment starts.

X2 is ON, HD0=16383, HD0/32768=0.25, the LED brightness is 25%.

X3 is ON, HD0=32767, HD0/32768=0.5, the LED brightness is 50%.

X4 is ON, HD0=49151, HD0/32768=0.75, the LED brightness is 75%.

X5 is ON, HD0=65535, HD0/32768=1, the LED brightness is 100%.

Press shut down button, X1 is ON, HDO is reset, shut down the PWM trigger condition,
LED voltage is OV.

10-2 Frequency measurement [FRQM]

1) Summary
Measure the frequency.

Frequency measurement [FRQM]

16 bits - 32 bits FRQM
instruction instruction

execution Normally ON OFF coil suitable XG1
condition models

hardware - software -
reguirement reguirements
2)Operands

347

Operands | Function Type

S1 Sampling pulse humbers 16 bits, BIN
S2 The display precision 16bits, BIN
D Measurement result 32 bits, BIN
S3 Pulse input terminal bit

3) Suitable Soft Components

Operands Word soft elements Bit soft elements
System Consta | Module System
nt
DIF| T|C | D|D|D|D| KH | Q| X|Y|M|S|T|C| Dn
DID|ID|X|]Y|M|S D| D m
S1 o|lo | o | o °
S2 o/l o| o | o °
D °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD; DM
includes DM, DHM; DS includes DS, DHS. M includes M,HM,SM; Sincludes SHS; T
includes T,HT; C includes C, HC.

Function
and Action

P Go () (&) (2

ML{ FRQM \ K20 \ D100 \ X0 \ K1 \

The sampling pulse numbers can be adjusted according to the frequency, the higher the
frequency, the bigger the sampling pulse numbers.

o Measurement result, the unit is Hz.

e Display resolution: only can set to 1, 10, 100, 1000, 10000.

e When MO is ON, FRQM collects 20 pulses from X0, and records the sampling time. The
result of sampling numbers dividing by sampling time will be saved in D100. The
measurement process will repeat. If the measurement fregeuncy is less than the
measurement range, the result is 0.

e The measurement precision is 0.001%.

The pulse input terminal for FRQM:

Model X terminal Max frequency
X0
XG1 16T4 X2 80KHz
series X4
X6

348

Example

Asynchronous motor drives the conveyor to transfer the work piece. It needs to real-time
display the work piece moving speed. The diameter of the transmission shaft is 100mm, the
gear numbers on the transmission shaft are 100, the speed unit is m/min.

proximity switch

X0

I gear number=100

work piece

E=100mm

HSVﬂChFOHOUS motor

Component explanation:

PLC Control explanation Mark
component
X0 Proximity switch, to count the gear numbers
MO Start signal
D16 Speed register (float number)
Program:
MO

FROM K20 DO X0 K1

DFLT DO D2

EDIV D2 K100 D4

EMUL KO0.1 K3.14 D6

EMUL D4 D6 D10

LI

EMUL D10 K60 D16

Program explanation:
1. Set ON the start signal MO, to run the frequency meansurement program
2. Transform the frequency to float number, then it is divided by 100 (gear numbers per

349

rotation), the result is shaft rotate numbers per second (float number).

3. Calculate the diameter of the transmission shaft and save in register D6 (float
number), then calculate the transfer distance per second and save in D10 (float
number).

4. the transfer distance per second multiply by 60 is the speed (m/min).

10-3 Precise Timing [STR]

1) Summary

Read and stop precise timing when precise timing is executed

Precise timing[STR]

16 bits - 32 bits STR
instruction instruction
execution edge activation Suitable XG1
condition models
hardware - software -
reguirement reguirements
2)Operands

Operands | Function Type

D1 Timer Number bit

D2 specify timer’s value or soft component’s ID 32 bits, BIN

number
3)Suitable Soft Components
Operan Word soft elements Bit soft elements
ds System Consta | Module System
nt
DIF| T|C|D DID|KH |I|Q|X|Y M|S|T|C| Dn
D/ D|D]| X M|[S D| D m

D °
D1 °
D2 o o | o | @ °

*Note: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM; S includes S and
HS; T includes T and HT; C includes C and HC.

Function
and Action

<Precise timing>, <Precise timing reset>

350

—ﬁ?—{ STR \ ETO \ K100 \

:Timer’s number. Range: ETO~ET30 (ETO, ET2, ET4...... all number should be even)

:Timing value

Precise timer works in unit of 1ms.
Precise timer32 bits, the counting range is 0~+2,147,483,647.

When executing STR, the timer will be reset before start timing.

When XO0 turns from OFF to ON, ETO starts timing. ETO will be reset and keep its value 100

when accumulation time reaches 100ms; If X0 again turns from OFF to ON, timer T600 turns
from ON to OFF, restart to time, when time accumulation reaches 100ms, T600 reset again.

See graph below:

-

-

X0
ETO

100ms 100ms
MO

When the pre-condition of STR is normally open/closed coil, the precise timer will set ON
immediately when the timing time arrives and reset the timing, and cycle back and forth.

<read the precise timing>, <stop precise time>

X0
—A——— DMOV | ETO DO
MO
—Al——— STOP ETO

When X0 changes from OFF to ON, move the
current precise timing value into DO
immediately, it will not be affected by the scan
cycle;

When MO changes from OFF to ON, execute
STOP instruction immediately, stop precise
timing and refresh the count value in ETDO. It
will not be affected by the scan cycle;

351

PreciseTiming Interruption

® When the precise timing reaches the count value, it will generate an
interruption tag, interruption subprogram will be executed.

® Can start the precise timing in precise timing interruption.

® Every precise timer has its own interruption tag, as shown below:

Interruption Tag corresponding to the Timer:

Timer’s No | Interruption Tag || Timer’s No | Interruption Tag
ETO 13000 ET10 13005

ET2 13001 ET12 13006

ET4 13002

ET6 13003 ET22 13011

ET8 13004 ET24 13012

X0
| SR | ETO | Koo | When X0 changes from OFF to ON,

ETO i imi
& - ETO will start timing. And ETO reset

when accumulation time is up to

Jﬂ% RT | ETO | 100ms; meantime generates an
interruption, the program jumps to

interruption tag 13000 and execute the
subprogram.

SMo

Example 1

The filling machine controls the filling capacity by controlling the liquid valve open time (it is
3000ms in this application). To improve the filling capacity precision, the liquid valve open
time can be controlled by precise timing.

[T L &

=
= |

=Hn

Filling machine

352

Component explanation:

PLC Control explanation Mark
component
X0 Start button, X0 is ON when the button is pressed
ETO Precise timer
YO0 Control the liquid valve, YO ON when the valve
opened, YO OFF when the valve closed

Program:
X0 YO
il S)
—| STR | ETO | K3000 |-
ETO YO
— (R
—————— RST | ETO |-

Program explanation:
1. When X0 is ON, the liquid valve YO0 and precise timer ETO open at once.
2. Shut down the liquid valve Y0 and precise timer ETO when the time arrived.

Example 2
The precise timer interruption can produce the following pulse wave. The Y2 ON time is
500ms, the pulse period is 1000ms.

X0 |

1000ms

Component explanation:

PLC Control explanation Mark
component
X0 Start button, X0 is ON when button is pressed
Y2 Pulse output terminal
MO Internal auxiliary coil
ETO Precise timer

Program:

353

wao% STR | ETO | Kso0 |

X0 |
) | RST \ ETO }
SMO Y2 Y2
i (s
L{ PLS | Mo |-
MO Y2 Y2
—f I (R)

HSML{ STR \ ETO \ K500 }

Program explanation:
1. When X0 is ON, the precise timer interruption will work, Y2 will output the pusle
wave.
2. When X0 is OFF, shut down the precise timer interruption, Y2 stop outputting.

Example 3
As the FRQM calculating the time for fixed pulse numbers, we will change the way to
calculate the pulse numbers in fixed time.

encoder

o

[

power supply !

= =z __
shield layer
Component explanation:
PLC Control explanation Mark
component
MO Start button, X0 is ON when pressed
ETO Precise timer
HDO Precise timer setting value (unit: ms)
HSCO High speed counter
D10 The measured frequency (unit: s)
Program:

354

J’#L{ STR ETO HDO k
HNIIH RST ETO H

M CNT HSCO K999999999 |-
ﬂ DMOV HSCO DO |-

HSML% DFLT D0 D2 |-

—{ DFLT HDO D4 |
—| EDIV K1000 D4 D6 |-
—{ EMUL D2 D6 D8 |-
— DINT D8 D10 |
—— DMOV KO0 HSCO |

SMO
L STR ETO HDO }

Program explanation:
1. Set the high speed counter sampling period register HDO, the unit is ms.
2. Set ON MO to start the precise timer interruption and high speed counter, calcuate the
frequency
3. The frequency range is 0-80KHz, the precision is 0.005%.

10-4 Interruption [EI], [DI], [IRET]

XG series PLC have interruption function, including external interruption and timing
interruption. By interruption function we can deal with some special programs. This function
is not affected by the scan cycle.

10-4-1 External Interruption

The input terminals X can be used to input external interruption. Each input terminal
corresponds with one external interruption. The input’s rising/falling edge can activate the
interruption. The interruption subroutine is written behind the main program (behind FEND).
After interruption generates, the main program stops running immediately, turn to run the
correspond subroutine. After subroutine running ends, continue to execute the main program.

355

Subprogram

Note: The external interruption of XC series PLC cannot be activated by rising edge
and falling edge at the same time; but XG series PLC supports rising edge and falling
edge activation meantime.

Input Interrupt

External Interruption’s Port Definition

XG1 series 16 1/0

Input _ _Pointer no. _ _Prohibit
: Rising Falling interrupt
terminal | . . . L
interrupt | interrupt instruction

X2 10000 10001 SMO050
X3 10100 10101 SMO051
X4 10200 10201 SMO052
X5 10300 10301 SMO053
X6 10400 10401 SMO054
X7 10500 10501 SMO055

XG2 series 26 1/10

Input _ _Pointer no. _Prohibit
: Rising Falling interrupt Note
terminal | . . . L
interrupt | interrupt instruction
X2 10000 10001 SMO050
X3 10100 10101 SM051
X4 10200 10201 SM052
X5 10300 10301 SMO053
X6 10400 10401 SM054 High speed interrupt,
X7 10500 10501 SMO055 repetition period is10khz
X10 10600 10601 SM056
X11 10700 10701 SMO057
X12 10800 10801 SM058
X13 10900 10901 SM059
X16 11000 11001 SMO060 Low speed interrupt,
X21 11100 11101 SM061 repetition period is 1khz
Note:

(1) X2 X5 X10 X13 of XG2 is the collector input signal, X3 X4 X6 X7 X11 X12 is the
differential input signal. The external interrupt will not be executed after the prohibit interrupt
command coil is set!

(2) The external interrupt terminal that has been used as an external interrupt signal in the
program can no longer be used as the origin and Z phase of ZRN and the EXT signal of PLSR.

356

Interruption Instruction

Enable Interruption [El], Disable Interruption [DI], Interruption Return [IRET]

—
- ® |If use EI instruction to allow
Interrupt interruption, then when scanning the
range program, if interruption input

changes from OFF to ON, then
execute subroutine @M. @. Return
to the original main program.

-
m
P
@)

000U

10000

Interrupt @ Interruption pointer (I****) should

@ be behind FEND instruction;
® PLC is usually on the status that
Interrupt allows interruption.
— @

END

Note: In interrupt subroutine, only simple instructions such as set, reset, transmission and
operation can be written, which can be executed in a scanning cycle. Other instructions such
as sending pulses, timing (except for precise timing), communication and other instructions
that need to be continuously executed are not supported.

Interruption’s Range Limitation

—
® By programming DI instruction, can
Interrupt set interruption disabled area
- forbidden ® Allow interruption input between
DI~EI
-

® If interruption forbidden is not
required, please program only with El,

Interrupt and program with DI is not required.
allowed

0 U0 4

357

Disable the Interruption
—
© ® Every input interruption is
equipped with special relays
mo D Interrupt (SM50~SM69) to disable
allowed interruption.
— >
® In the left program, if use MO to
set SM50 “ON”, then disable
the interruption 0.
Interrupt
—
© program
END
Example 1
/N AN /N g
origin A (X0 B (XD C (X2)

The positions of A, B, C are unknown. The speed of the three segments are different. The

application can be perform by PLSF instruction and external interruption. We can install three
proximity switch at postion A, B, C, and connect the signal to PLC input terminal X0, X1, X2.
(suppose X0, X1, X2 are external interruption terminal, the related rising edge interruption 1D

are 10000, 10100, 10200. The PLC external interruption terminal please refer to “external
interruption terminal definition). The pulse terminal is YO, the direction terminal is Y2. To

improve the speed changing precision, the acceleration and deceleartion time are 0. The speed

will switch by external interruption.

Segment Frequency setting | Pulse numbers
value (Hz)
Origin ---- A 10000 999999999
A----B 30000 999999999
B ----- C 20000 999999999

Acceleration
and deceleratoin
time

0

Note: as the pulse numbers of each segment is unknown, the pulse numbers should set large
enough to ensure the object can move to the proximity switch. The STOP instruction will be

run by external interruption when the object gets to position C.

358

Component explanation

PLC Control explanation Mark
component
MO Start button, PLSF will send pulse when the
button is pressed
HDO the PLSF pulse frequency register
Program
SM2
— DMOV K10000 HDO \f

HMH PLSF HDO K1 YO \—

0

i

DMOV K30000 HDO %

IRET

10100

SMO

j

DMOV K20000 HDO %

SM MO
My (R)
L{ STOP YO K1 k

IRET

END

Program explanation

1. SM2is ON, set HDO to 10000, set on MO0, PLSF instruction will send 10000Hz pulse,

the object will move from origin to A.

2. When the object touches A, X0 will be ON at once, the external interruption 10000
will work, HDO is set to 30000, the object will move from A to B with the speed of

30000Hz.

3. When the object touches B, X1 will be ON at once, the external interruption 10100
will work, HDO is set to 20000, the object will move from B to C with the speed of

20000Hz.

4. When the object touches C, X2 will be ON at once, the external interruption 10200
will work, MO is set OFF, the pulse sending will stop at once.

359

Example 2

The diagram is the product packing machine. The robot will pack the product when 30
products are detected, the robot and counter will be reset after packing completed. To
improve the working efficiency, the product sending speed is very fast, the sensor X2 detects
the product time is 8ms, PLC input terminal filter time is 10ms, the normal counter cannot
detect the products. We can use the external interruption to count the products.

&

ﬁmmmmmmm%pm

X1
d
Component explanation:
PLC Control explanation Mark
component
X2 Product counting photoelectric sensor, X2 is ON when the
product is detected
X1 Robot action complete sensor, X1 is ON when the action
is completed
Co 16-bit counter
YO0 Robot
Program:
MO YO
— | ¢ r—
X1 MO
— (R
YO
(R)r—
RST CO =
FEND
10000
SMO
} CNT CO0 K30 H
L{?O MO
| (S) —
IRET
END

Program explanation:
1. In the external interruption program, count the X2 input, when the X2 is 30, set ON
360

MO

2. In the main program, it controls the YO0 according to the MO state.

3. When the robot action is completed, X1 changes from OFF to ON once, RST works,
YO0 and CO are reset, MO is OFF, wait for the next packing process.

10-4-2 Timing Interruption

Function and Action

Under the circumstance that the main program execution cycle is very long, when you
have to handle with special program or execute specific program every once in a while
when program is scanning in sequence control, the timing interruption is very useful. It is
not affected by PLC scan cycle and executes timing interruption subroutine every N ms.

X0
- 0
FEND
14010
SMO
—— INC \ DO \
IRET

® Timing interruption is open status in default, just like other interruption subroutines, it
should be written behind the main program, starts with 140xx, ends with IRET.

@ There are 20 channels of timing interruptions, representation; 140**~159**(“**’means
interruption time; Unit is ms. E.g: 14010 means executing once the first timing
interruption per 10ms.

Interruption No

XG series timing interruption:

Interruption | Interruption Interruption | Interruption Explanation
number ban number ban
instruction instruction
140** SMQ70 I150** SM080 ** means the timing
141** SMO071 I51** SM081 interruption time, the range
142** SM072 I152** SM082 is

361

143** SM073 I53** SM083
144** SMO074 154*>* SM084
145** SMO075 I55** SM085
146** SMO076 156** SM086
147** SMO077 I57** SMO087
148** SMO078 158** SM088
149** 159** SM089
SMO079

1~99, the time unit can be
switched by setting SM98.
When SM98 is on, the time
unit is 100us. When SM98
is off, the time unit is 1ms.
Note:

(1) Only 159 * * timing
interrupt supports 100us
time unit.

(2) The time unit selection
function is only supported
by PLCs with firmware
version v3.4.6 and above.

Interruption range’s limitation

® Timing interruption is usually on ‘allow’ status.
® Can set interruption allow and forbidden area with EI. DI instructions. As shown in
below pictures, all timing interruptions are forbidden between DI and El, and

allowed beyond DI~EI.

FEND

14010

IlI lIlHl

IRET

H
R

~_ 7 ~ 7 N NS

Interruption Forbidden

Interruption allowed

Interruption forbidden

Interruption allowed

Interruption forbidden

362

10-5 Multi station control[MSC]

1) Summary

>

SMO070

Interruption

® The first 3CH timing

Interruption
Program

interruptions are equipped with
special relays (SM070~SM079).

In the left example, if use MO
to set SM070 “ON”, then forbid
timing interruption forbidden.

Grab the encoder value according to the trigger input, calculate and save the entry value and
exit value of the workpiece in each station, compare the stored value of each workpiece in
each station with the current value of the encoder, and output the comparison result.

Multi station control[MSC]

16 bits - 32 bits MSC

Execution Normally ON/OFF Suitable XG1

condition Models

Hardware - Software -

requirement requirement

2) Operands

Operands | Function Model

S1 Specify the software component address number of the | bit
command trigger input point

S2 Specify high speed counter number 32 bits, BIN

S3 Specify the number of stations and workpieces, and the | 16 bits, BIN
first address number of the register of the filtering time

S4 Specify the first address number of the register for the 32 bits, BIN
reference value and the deviation value

D1 Specify the number of the first address of the register 16/32 bits,BIN
storing the index value and the comparison value

D2 Specify the software component address number of the | bit
output result

363

3) Suitable soft component

Operands Word soft elements Bit soft elements

System constant | Module System

D |TD|CDOD|IDX|DY| D|{DS| KH | ID|Q|XY|M|S|T|C| Dum
M

S1 .

S2 nly HSC

S3

S4

oo (e |O

D1

D2 o | o

*Note: D includes D, HD. TD includes TD, HTD. CD includes CD, HCD, HSCD, HSD. DM
includes DM, DHM. DS includes DS, DHS. M includes M, HM, SM. S includes Sand HS. T
includes T and HT. C includes C and HC.

Function and action

. @ @ (®
P% MSC‘ X4 ‘HSCO‘ HDO ‘HDlO‘ DlOO‘ MO

S1: it is the command trigger input point, which can select the external interrupt input
point or ordinary input point, trigger the command at the rising edge and falling edge,
and grab the encoder value.

e S2:itis the number of the high-speed counter used together, which is used for encoder
signal input. The high-speed counting mode is single-phase incremental mode.

e S3: three 16 bits registers (single word) are occupied continuously to set the number of
stations, the number of workpieces, and the filtering time. It is recommended to use the
power-off holding register.

The specific register allocation is as follows:

S3: set the number of stations, recorded as n, range: 1~32;

S3+1: set the maximum number of workpieces that can be processed, recorded as m,
range: 1~64;

S3+2: set the filtering time, range: 0~32767, unit: ms. This parameter can be used to
prevent errors caused by mechanical jitter. If the filtering time is set to 0, it means no filtering.
If itis less than O, it will be treated as 0. Assuming that the filtering time is set to t and the
trigger input point is X4, the capture of the input signal adopts the following methods:
Rising edge: after X4 off state is maintained for at least t ms, the first detected rising edge is
the trigger signal;

Falling edge: after the X4 on state is maintained for at least t ms, the first falling edge

detected is the trigger signal.

® S4: 3n 32-hit registers (double words) are occupied continuously, which are used to set
the reference value, workpiece entry deviation value and workpiece departure deviation
value of each station. Each parameter occupies 2 registers continuously. It is
recommended to use the power-off holding register. The specific register address
allocation is as follows:

364

Name Station 1 Station2 | Station n
Reference value(double S4 S4+2 | L.l S4+(n-1)>x2
word)
Workpiece entry deviation S4+2n S4+2n+2 | ... S4+(2n-1)>2
value(double word)
Workpiece departure S4+4n S4+4n+2 | ... S4+(4n-1)>2
deviation value(double
word)
¢ When the reference value of a station is set to O, it means that the station does not
operate.

& The workpiece entry deviation value and the workpiece departure deviation value are
mainly used for position calibration. When the encoder value of the workpiece entering
and leaving the corresponding station is found to be inconsistent with the setting during
actual use, it can be calibrated by adjusting the workpiece entry deviation value and the
workpiece departure deviation value. For example, the reference value of station 1 is set
to 1000, which means that the workpiece enters station 1 after triggering the rising edge
of X4 through 1000 high-speed count values. If in actual use, the workpiece enters
station 1 with only 990 high-speed count values, the workpiece entry deviation value can
be set to -10.

e D1: continuously occupy 2n 16 bits registers (single word), 2m >n 32-bit registers
(double word) are used to store the workpiece forward index value, follow index value,
entry comparison value and departure comparison value of each station. The specific
register address allocation is as follows:

Name Station 1 Station2 | Station n
Forward index D1 Di+1 | ... D1+(n-1)
value(word)

Follow index D1+n D1+(n+1) | D1+(2n-1)
value(word)

Workpiece 1 entry D1+2n Di1+2n+2 | D1+2n+2(n-1)
comparison

value(double word)

Workpiece 1 D1+4n Di1+4n+2 | D1+4n+2(n-1)
departure

comparison value
(double word)

Workpiece m entry D1+4mn-2n Di+4mn- | D1+4mn-2
comparison 2n+2

value(double word)

Workpiece D1+4mn Di+4mn+2 | D1+4mn+2(n-1)
mdeparture

comparison

value(double word)

Note: D1 occupies a large storage area, please confirm whether the register space is enough.
If it is not enough, PLC will only store data in the effective area, and will not generate alarms
and prompts.

365

¢ When the entry comparison value and the exit comparison value of a station are both
0, it means that the comparison action of the station is not executed.

¢ The forward index value will automatically increase by 1 when triggering each rising
and falling edge of the input signal (if the filtering time is > 0, wait for the filtering time
and then increase by 1), and the method of cyclic accumulation is adopted. For example,
when the maximum number of workpieces processed is m = 10, the forward index value
will cycle by 0, 1, 2, 3... 19, 0, 1, 2, 3... 19 (the initial value is 0). Since the forward index
value will increase by 1 at both rising and falling edges, the maximum forward index
value is 2*m.

Note: the following index value will be judged before adding 1 to the forward index value.

If the value after adding 1 is equal to the following index value, the forward index value

will not be accumulated and the comparison value this time will be recorded.

¢ Follow the index value will automatically add 1 when the workpiece enters and
leaves the station. Generally, after the workpiece has completed a station, the following
index value of the corresponding station is even.

& The entry comparison value is automatically calculated and stored in the D1 data area
when the corresponding workpiece triggers the rising edge of the input signal. The entry
comparison value of the station is generally:

¢ The comparison value of workpiece m entering station n = the grab count value of
workpiece m (at the rising edge) + the reference value of station n + the workpiece
entering deviation value of station n.

¢ The departure comparison value is automatically calculated and stored in the D1 data
area when the falling edge of the input signal is triggered by the corresponding
workpiece. The departure comparison value of the station is generally:

¢ The comparative value of workpiece m leaving station n = the grab count value of
workpiece m (at the falling edge) + the reference value of station n + the workpiece
leaving deviation value of station n.

D2: continuously occupy n coils (corresponding to the number of n stations), and only Y
and M coil outputs can be specified to judge whether the corresponding workpiece enters
and leaves the station. When the command is executed, each station will judge whether
the corresponding workpiece enters and leaves the station according to the set
comparison value according to the follow index value. When the real-time count value of
the corresponding workpiece is > the enter comparison value, the corresponding output
point is set to on, and the follow index value is automatically increased by 1; When the
real-time count value of the corresponding workpiece > leaves the comparison value, the
corresponding output point is set to off, and the following index value automatically
increases by 1, but it will not exceed the forward index value.

There is no limit on the number of times MSc instructions are used, but if the same high
counter needs to be used in the program, each instruction must be placed in a different
process, and only one instruction can be executed at a time.

Before the instruction is executed, please confirm whether the high-speed counter used
overflows (it can be judged by the high-speed count overflow flag bit sm130, etc.) and
make corresponding treatment.

366

e When the precondition of MSC is disconnected and reconnected, the values in D1 and
D2 storage areas will be cleared to 0 and set to off.

Rising
edge
~

~

Detection
unit

Start j——>»

a
w/

Falling
edge

Procedure example

. BN
—»<_ Testing

Calculation|
unit

Station 1

l

/ 7

[Data storage| |

— -
\ area ‘\ /

Comparison

Station 2

:

| Compariso

unit

Calculation
unit

Equal entry
value

l

(\Co mpare/\ =

T

The departure
value is equal

Station n

:

Comparison

A

nunit

:

Equal The departure

entry value is equal
value

Output

No
output

Output

No No

unit

:

Equal

entry The departure
value value is equal

l

For example, the existing five workpieces need to be processed through three stations. The
trigger input signal is X4, the encoder signal input point is X0 (the corresponding high-speed
counter is HSCO), the width of each workpiece is 100, the distance between workpieces is
1500, the distance between workpieces is 1000, the distance between workpieces is X4, 2000,
and the distance between workpieces is 4000.

Station 1 Station 2 Station 3
Station 5 Station 2 Station 1
...... x4
| 1500 |100| 1000 o
» 2000
4000

The procedure is as follows:

HM MSC | X4 [HSCO | HDO | HD10 | HD100 | M10 |

Soft component address Function description

X4 Trigger input point

HSCO High speed counting input point, receiving encoder signal

HDO Number of stations, HD0=3 in the example

HD1 The maximum number of workpieces that can be
processed , HD1=4 in the example

HD2 Filter time, HD2=300ms in the example

HD10(double word) The reference value of station 1.HD10=1000 here in the
example

HD12(double word) The reference value of station 2.HD12=2000 here in the
example

HD14(double word) The reference value of station 3.HD14=4000 here in the
example

HD16(double word) The workpiece of station 1 enters the deviation value and

367

issetto 0

HD18(double word) The workpiece of station 2 enters the deviation value and
issetto 0

HD20(double word) The workpiece of station 3 enters the deviation value and
issetto 0

HD22(double word) The workpiece departure deviation value of station 1 is set

to0

HD24(double word)

The workpiece departure deviation value of station 2 is set
to0

HD26(double word)

The workpiece departure deviation value of station 3 is set
to 0

Output result address assignment:

Name

Station 1 Station 2 Station 3

Forward index
value(single word)

HD100 HD101 HD102

Follow index value(single
word)

HD103 HD104 HD105

Workpiece 1 enters the
comparison value(double
word)

HD106 HD108 HD110

Workpiece 1 leaves the
comparison value(double
word)

HD112 HD114 HD116

Workpiece 2 entry
comparison value(double
word)

HD118 HD120 HD122

Workpiece 2 departure
comparison value(double
word)

HD124 HD126 HD128

Workpiece 3 entry
comparison value(double
word)

HD130 HD132 HD134

Workpiece 3 departure
comparison value(double
word)

HD136 HD138 HD140

Workpiece 4 entry
comparison value(double
word)

HD142 HD144 HD146

Workpiece 4 departure
comparison value(double
word)

HD148 HD150 HD152

Output flag

M10 M11 M12

Program execution results:

Assuming that the high-speed count value when workpiece 1 triggers the rising edge of X4 is
1000, the forward index value, follow index value, workpiece entry comparison value and
workpiece departure comparison value of each station are shown in the following table:

Parameter Station 1 Station 2 Station 3
Workpiece | Forward | X4 rising edge:1 X4 rising edge:1 | X4 rising edge:1
1 index value | X4 falling edge: 2 | X4 falling edge: 2 | X4 falling edge: 2

368

M10 rising edge: 1

M11 rising edge:

M12 rising edge:

Follow 1 1
index value | M10 falling edge: | M11 falling edge: | M12 falling edge:
2 2 2
Entry HD106=2000 HD108=3000 HD110=5000
comparison
value
Departure | HD112=2100 HD114=3100 HD116=5100
comparison
value
Forward | X4 rising edge:3 X4 rising edge:3 | X4 rising edge:3
index value | X4 falling edge:4 | X4 falling edge:4 | X4 falling edge:4
M10 rising edge: 3 | M11 rising edge: | M12 rising edge:
Follow 3 3
index value | M10 falling edge: | M11 falling edge: | M12 falling edge:
Workpiece 4 4 4
2 Entry HD118=3600 HD120=4600 HD122=6600
comparison
value
Departure | HD124=3700 HD126=4700 HD128=6700
comparison
value
Forward | X4 rising edge:5 X4 rising edge:5 | X4 rising edge:5
index value | X4 falling edge:6 | X4 falling edge:6 | X4 falling edge:6
M10 rising edge:5 | M11 rising M12 rising edge:5
Follow edge:5
index value | M10 falling edge: | M11 falling edge: | M12 falling edge:
Workpiece 6 6 6
3 Entry HD130=5200 HD132=6200 HD134=8200
comparison
value
Departure | HD136=5300 HD138=6300 HD140=8300
comparison
value
Forward | X4 rising edge:7 X4 rising edge:7 | X4 rising edge:7
index value | X4 falling edge:0 | X4 falling edge:0 | X4 falling edge:0
M10 rising edge:7 | M11 rising M12 rising edge:7
Follow edge:7
index value | M10 falling edge: | M11 falling edge: | M12 falling edge:
Workpiece 0 0 0
4 Entry HD142=6800 HD144=7800 HD146=9800
comparison
value
Departure | HD148=6900 HD150=7900 HD152=9900
comparison
value
Forward | X4 rising edge:1 X4 rising edge:1 | X4 rising edge:1
index value | X4 falling edge:2 | X4 falling edge:2 | X4 falling edge:2
M10 rising edge:1 | M11 rising M12 rising edge:1
Workpiece Follow edge:1
5 index value | M10 falling edge: | M11 falling edge: | M12 falling edge:
2 2 2
Entry HD106=8400 HD108=9400 HD110=11400
comparison

369

value

Departure | HD112=8500 HD114=9500 HD116=11500

comparison
value

Note: Once X0 is disconnected and reconnected, all the data in the above table will be cleared
to 0.

370

11 Common Questions and Answers

This chapter mainly introduces XG series PLC common questions and answers.

Q1: How to connect PLC with PC?

Al: XD series PLC supports downloading through USB port, RS485 port, Ethernet
port. XG2 series PLC supports downloading through RS232 port, RS485 port, Ethernet
port.

1. XG1 connect PC via USB port (refer to Section 6-1-1)

2. XG2 connect PC via RS232 port

If your PC is desktop computer, you can use our company special XVP cables to connect PC
and PLC (Usually COM1) as general commercial desktop computer has 9 needle serial port.
If the PC only has USB port, please use USB to RS232 convertor. After connecting XVP
correctly, power on PLC, click Config Software ComPort, the following window will jJump
out:

Config Software ComPort El
Serial PortiC) Baudrate (B]
Comi w DiBlue Tooth Serial Fort {:} 4800EBFS (:} QEO0BES

(¥) 192008FS () S5400BFS

Touch Win USE Fort
[l () 115200BF3

FParity(F) Other set
() Fonel) 0dd () Even Databits:3 , Stopbits:1l

Communi cation Error

[Automatic Detection l [0K] ’ Cancel l

Choose correct communication serial port according to your PC actual serial port.; baud rate
selects 19200BPS, parity check selects even parity, 8 data bits, 1 stop bit; you can also click
‘check’ button directly in the window, and communication parameters will be selected by
PLC itself. ‘Connect to PLC succeed’ will be displayed on the left bottom of window as
below:

371

Config Software ComPort &3

Seral Port{C) Baudrate(B)
COM5 | |¥| Blue Tooth Seral Port 4800BPS S600BPS
@ 19200BPS= 3B400BPS
Touch Win USE Port
115200BPS
Parity(P) Cther set
Mone) Odd @ Ewven Databits: & Stopbits: 1
Connect To PLC Succeeded
Automatic Detection | [QK] | Cancel

Then it means that PLC has been connected to PC successfully.

3. XG1, XG2 connect PC through RS485 port

If the computer is equipped with 9-pin serial port, it can connect the PC with PLC (usually
com1 port) through RS485 serial conversion module and XVP cable. If the computer has
only USB interface, it can be connected through USB to RS485 cable.

When the wiring is correctly connected, power on the PLC,click ‘Config Software
ComPort’) ‘ , and the following window will pop up:

Communication configuration >

Mew Edit Delete Move-Up Move-Down

Fame Conmection status Status Belonging Description Connect Info

COM_Modbus_1 | Hot connected || in use || Global |Station mumber: 1, serial port: COM3, baud v ..
Ethernet_Xmet_ 1 | Hot connected || || Global |Et11ernet, specified address commection, IF a. ..
Ethernet_Modbus_Defanlt | Hot connected || || Global |Hodbus—Tl:P cormection, device IF addrezsz: 15 ..

Choose correct communication serial port according to your PC actual serial port.; baud rate
selects 19200BPS, parity check selects even parity, 8 data bits, 1 stop bit; you can also click
‘check’ button directly in the window, and communication parameters will be selected by
PLC itself. ‘Connect to PLC succeed’ will be displayed on the left bottom of window as
below.

372

Communication configuration p4

Communi cation Name: |COM Modbus 1

Connection mode selection
Interface Type: | COM w

CommProtocol : Modbus w

Communication parameter configuwration

I fdutomatic Detection I

Station Ho Baudrate(:ﬁ)

h -
(C) 4800BFS () 9600BES
(®) 19200BFS () 35400BPS

() 115200BF5S

Serial Fort(C)
COMZ (USE} ~
I:‘ Blue Tooth Serial Port

Parity(?;) Other set
() Fone () 0dd (8 Even Databit=z:8 ,Stophit=:1

huto—commect onm exit

6| s

4. XG connect PC through RJ45 port

1)Computer configuration

After the network cable is plugged in, open "control panel" — "network and Internet" —
"network connection".

Find the Ethernet that has been successfully connected. Right click the Ethernet and click
properties. The Ethernet properties interface pops up. Then follow the steps below:

(1) Double click "Internet Protocol Version 4 (TCP/IPV4)".

(2) Select "use the following IP address".

(3) Set IP address: 192.168.6.xxx, "xxx™ can be set arbitrarily (except 6).

Note: The last digit of the computer address and the IP address of the PLC device cannot be
set repeatedly.

L

Networking | Sharing General

Connect using: You can get IP settings assigned automatically if your network supports
, this capability. Otherwise, you need to ask your network administrator
¥ Realtek PCle GBE Family Controler 2 o o arate 1P aattmon,

= () Obtain an IP address automatically
This connection uses the following tems: = -
(®) Use the following IP address: |
¥ Bl GoS Packet Scheduler -
[- Microsoft Network Adapter Mutiplexor Protocol TP address: 192.168 . 6 . 10
] - Microsoft LLDP Protocol Driver Subnet mask: 255 .255 .255 . O
V] -a. Link-Layer Topology Discovery Mapper /0 Driver
] -+ Link-Layer Topology Discovery Responder Default gateway:
[[] -a Intemet Protocol Version 6 (TCP/IPv6)
(TR ntemet Protocol Version 4 (TCP/IPv4) v Obtain DNS server address automatically
= & (®) Use the following DNS server addresses:
Instal... Uninstall Properties Preferred DNS server:
Description

Alternate DNS server:
Transmission Control Protocol/Intemet Protocol. The default

wide area network protocol that provides communication

across diverse interconnected networks. [validate settings upon exit

o || coes =

373

2)PLC configuration
After checking the wiring and Ethernet configuration,open XDPPRO programming
tool—click communication configuration—double click Ethernet-Xnet.

400G @k R A w
NN THCES [EEEY =

Communication configuration I X

New Edit Delete Move-Up Move-Down

Hame Cormection status Status Belonging Description Connect Info
USE_¥net_1 Hot conmected || in use || Global |Search type: Automatic search, Search mode: ...

|
Ethernet_¥net_Default | Hot conmected || || Global |Search type: ethernet, Search mode: Deviee t...
|

Ethernet_Modbus_Defanlt Hot conmected || || Global |Modbus—TCP cormection, device IF address: 19...

Configure according to the following figure:

Choose Xnet protocol, the IP address is your PLC IP address. Click [Comm-Test] ,
‘Connect to PLC succeed’ will be displayed

Communication configuration Pt

Communi cation Name: |Ethernet Xnet 1

Connection mode selection

IInterface Type: |Ethernet v|
[Comml"rotocol: Enet V|
[Con.nect Tvpe: dezignated addres V|

Communication parameter configuration

IF hddreszs: 192 168 6 6

ServerConfiz Service stopped

huto—cormest on exit

o | ce

Click OK after configuration and select " in use" for corresponding status.

Q2: PC cannot connect PLC via RS485 port, it shows offline status?

A2:

Several possible reasons:

Users may changed the communication parameters of RS485 in PLC.

RS485 to USB convertor driver is not installed well or RS485 to USB cable is not good.
RS485 to serial port module is not good.

374

RS485 port is damaged.

Solutions:

At first, use Xinje XVP cable to connect PC and PLC;

After confirming the connection cable is the Xinje special XVP cable and USB convertor has
been used, you can use it to try to connect desktop PC with 9-needle serial port to PLC. If the
desktop PC can be connected correctly, please change the USB converter cable with higher
performance or install the USB converter serial driver software again.

If PLC can not connect with desktop computer correctly either, you can use ‘stop PLC when
reboot’ function to stop PLC and recover the PLC to factory setting, operating method is as
follow:

Power on PLC and connect PLC by DVP cables, then click ‘online’ button on PLC editing
software menu;

¥iew Configure Optien
f B0 Ae
Click ‘Stop when PLC reboot’ from the drop-down menu;

Download Data

Run

(¥
gJ Stop
| Stop PLC When Eeboot |

Eﬁ Ladder Monitor

Following window will jump out;

x]

5top PLC while reboot

PIC need reboot

Sending command now

By this time, cut off PLC power for 2-3s and power on again, then a ‘PLC has been stopped
successfully’ window will normally jump out; if the window do not jump out after power on,
try again a few times until the information window of successful stop jump out.

Information | 3 |

375

Then click ‘configure’ button ;

Online Option '
Y

Click ‘Reset PLC’ in the drop-down menu;

Motion Settings
Operand Data List

Keep BRegisters Settings

Rezet FLC

By this time, ‘Reset PLC’ information window will jump out and it means that all steps of
‘Stop when PLC reboot’ have been finished.

PLC Initialize =

':0:' PLC Initialize Success

If initialize PLC unsuccessfully after you trying a few times or the following window jumps
out after clicking ‘Reset PLC”:

Error A

'8' Offling, Can't PLC Initialize
Ok

In both cases, use PLC system update tool to update PLC system, and PLC and PC will be
connected successfully if system is updated (For more steps about system update, please refer
to Q3 related content).

If update of the desktop computer with 9-pin serial port fails, it is very likely that PLC
communication port is damaged, and please contact manufacturer or agent.

Q3: XG series PLC system upgrade

A3:

When does PLC need update usually?

PLC software is in a continuous upgrade stage; if software and hardware version do not match,
PLC will not support those upgraded function.

When users change the communication parameters, PLC and PC can not connect.

376

When users use ‘program confidential download’ function, however, forget the password
(Note: PLC program will disappear after system update!).

How to update XG1 series PLC?
(1) PLC updating tools include ‘Update tool’ and ‘system file’ (*.sys file)
(2) Close all the programs which may occupy the serial port. Connect PLC with PC through
RS485 to serial port module and XVP cable.
(3) Cut off the power of PLC, open the update tool.

J] Equipment Self-updating Tool V0.1.23 = L

‘3 Product option Open CommConfig B Start

Product:PLC | Communication port :COM1, Baud rate :19200 Offline user mode

(4) Click open, select the correct system file.

377

{J] Open “

) XD update » V3.7.2 (2021-12-7) XG1
Organize ~ New folder = < (7]
A Name ’ Date modified Type
/8 This PC
%) XG1-16T4_V3.7.2-20211104.sys 4 48 PM
m Desktop
Documents

& Downloads

W Music

= Pictures

8 Videos

s 05(C)

s Local Disk (D:)
s Local Disk (F:)
¢a Local Disk (G:)
ca Local Disk (H:)

v < >
File name: | XG1-16T4_V3.7.2-20211104.sys v |“sys v

Open Cancel

ugs

J Equipment Self-updating Tool V0.1.23 -

Open w B3 start

F:\software'\PLC hardware'\XD update'

ts Product option

Set Comm Para

Para

CommPort V¥ BaudRate: 19200

Product:PLC | Communication port :COM1, Baud rate :19200 Offline user mode

(5) Click Start, it will show below window:

Communication setting

(6) Power on PLC again, now the PLC starts updating. It may take few minutes. When it
shows update successfully, it means the update is successful.

378

Set sleep mode.

ENOT
I Update successfully.

After finishing the update, cut off the PLC power, then power on the PLC again.

How to update XG2 series PLC?

(1) PLC update tool include update tool and system files (*.sys).

(2) Connect PLC LAN1 port with PC through Ethernet cable, change the computer IP to
Network segment 1, such as 192.168.1.200.

(3) Cut the PLC power, turn ON the switch no. 2 of SW1, then open the update tool.

(4) Click open, select correct system file, for example XG2-16.sys.

(5) Click commconfig, set the IP address which is the IP address of the LANL1 network port
of the PLC. Or click “scan IP” to search the IP address.

o

Y3 Product option Open | & CommConfig| BE Start

21-12-7 YXOH\XDH-60

CommPort: |Eth IF #ddr: IIQE.IEE. 6 .8 II Sean ITF I

0l Cancel

Ethernet connection information

AdapterHame Tericelll

17810453005-F519-0247

Product:PLC |Communication port :Eth,1P:192.168.6.10 Offline user mode

(6) Click start, it will show below window:

Communication settings
The communication settings are successful.

Load data file. ..

379

(7) Power on the PLC again, now the PLC starts updating. It may take few minutes. When it
shows update successfully, it means the update is successful.

- data
owrload data: 2517

After finishing the update, turn OFF the switch no. 2 of SW1. Then cut off the PLC power,
then power on the PLC again.

Q4: The bit soft component function.

Ad:

Continuous 16 coils consist of a word, E.g: DMO a word consist of 16 coils (bits) M0~M15 is
as below:

DMO:

| M15 | M14 | M13|[M12| M11| M10 [M9 [M8 [M7 [M6 | M5 | M4 | M3 | M2 M1| MO |
We can use bit in the register directly.

Example 1:

M100
PT% MOV K3 DMO }—‘ When M100 is from OFF to ON,

MO M1 are ON, M2—M15 are OFF

The other mode is bit operation of fixed register. E.g: DO0.0 is the first bit of16 bits in register
DO. Similarly, D0.1 is the second bit and so on, as shown below:

DO:
\ Do.15\ D0.14 \ D0.13 \Do.12 \ Do.ll\ D0.1o\ D0.9 \Do.s\ DO0.7 \ Do.e\ D0.5 \ D0.4 \Do.s \Do.z \Do.l\ D0.0 \

Similarly, we can use bit in register DO.

Q5: What’s the use of execution instruction LDD/OUTD etc?

Ab5:

When PLC executes program, state of input point state will map to image register. From then
on, PLC will refresh input state at the beginning of every scan cycle; if we use LDD
instruction, then the state of input point will not need map to image register; the same with
output point (OUTD).

LDD/OUTD instruction usually apply to the occasion that I/O need refresh immediately,
which makes the state of input and output avoid the influence of the scan cycle.

380

X0 status

LDD X0 input scanning

‘ period
vl

>

LD X0 input

Input point X0 sequence chart of LDD and LD

Q6: Why the output LED keeps flashing when using ALT instruction?

AB6:

For ALT and many calculation instructions, these instructions will execute every scanning
period when the condition is fulfilled (for example, the condition is normal ON coil). We
recommend that the condition is rising edge or falling edge.

Q7: Why the M and Y cannot output sometime?

AT:

Output mainly has two ways: 1. OUT instruction; 2. SET instruction. The coil will keep
outputting if there is no RST instruction.

Usually in the program, one coil M or Y should use the same output way. Otherwise, the coil
cannot output.

For example:

HM‘O ,YOF MO is ON, M1 is OFF, YO cannot output
" \YO MO is OFF, MO is ON, YO will output

— (Reason: two different coils drive the same

output coil

MO YO

—i (YO will be ON for one scanning period
MO e : . _

—) MO is ON, Y will keep outputting
M1 YR M1 is ON, YO0 is OFF

i y

381

Q8: Check and change the button battery in the PCB of PLC

A8:

The rated voltage of button battery is 3.6V. The voltage can be measured by multimeter. If the
value of power-loss retentive register is very large, it means the battery is low. Please change
the button battery.Users can use SM5 and SD5 to detect the power of button batteries in order
to facilitate timely replacement of batteries. See Appendix 1 and Appendix 2 for details.

Q9: Communicate with SCADA software

A9:

If there is no choice for XG series PLC in SCADA software, please choose Modbus-RTU
protocol and communicate through RS485 port. Please refer to XG series PLC instruction
manual chapter 6.

Q10: MODBUS Communication

Al0:

First of all, please ensure that the A and B terminals on the PLC are correctly connected with
the RS485 communication terminals of other devices. To modify the parameters of the PORT
of the PLC, the following methods are adopted:

Method 1: Configuration by configuration parameter instruction

For specific instructions, please refer to Chapter 6, Communication Functions of this manual.
The communication parameter settings of different devices are generally different, so it is
important to choose the correct frequency setting mode of communication devices, make clear
the corresponding MODBUS communication address and function code, and some
communication devices need a given operation signal before displaying the setting frequency.
Method 2: Configuration through control panel (refer to Chapter 6 Communication Function
of this manual for specific configuration method).

Q11: The LED light of XG series PLC (PWR/RUN/ERR)

All:
LED light Problem Solution

Check 1/O terminal, if there is
PWR shining, other 1. I/0 PCB has short circuit short circuit. Make sure the
LED off. 2. not click RUN for program program is running inside PLC.

Contact us for help.

1. PLC input power supply has
Three LED all OFF short circuit
2. PLC PCB damaged

Check the input power supply of
PLC. Contact us for help.

1. PLC input voltage is not Check the power supply voltage,

stable check if there is dead loop in the
PWR and ERR light 2. there is dead loop in the
program program. Update the hardware of

PLC. Contact us for help.

3. PLC system has problem

382

Q12: The result is not correct when doing floating operation

Al2:

Please transform the integer to floating number. For example: EDIV DO D2 D10. If the value
of DO and D2 is integer, the result will has error (D10). Please use below instruction to
transform the integer to floating number.

MO0

— [FLT Do D6 |

FLT D2 D8 |-

EDIV D6 D8 D10 |-

Q13: Why the floating numbers become messy code in online ladder

monitor window?

Al3:

As the floating number cannot be displayed in online ladder monitoring, please monitor the
floating number in free monitor function.

Open XDPpro software, click online/free monitor. The following window will pop up:

[PLC1- Free Monitor
:| Menitor |Add Edit Delete Delete All | Upward Downward |

Reg Monitor value Ward length Mum Format

Click “add” in the window, the following window will pop up. Set the monitor mode to
“float”. Monitor register set to D10. Then click ok.

Monitor Reg: D10 | Num: 1
Monitor Mode Show Mode
i bit @ Float @ Dec IUnsigned
) Word Bin ASCI
) DWord Hex

| oKk || Cancdl

383

Q14: Why data errors after using DMUL instructions?

Al4:

DMUL operation instruction is 32 bits*32 bits=64 bits operation, the result occupies 4 words,
such as: EMUL D0 D2 D10, two multiplier both are 32bit (D1,D0) and (D3, D2), the result is
64 bits (D13, D12, D11, D10), so D10~D13 will be occupied. If these data registers are used
latter, operation will error.

Q15: Why the output point action errors after PLC running for a

while?

Al5:
It’s possible that output terminal is loose, please check.

Q16: Why expansion module does not work while power indicator is

ON?

Al6:
It is likely the connection of module strips and PLC pins or CPU is not good. Compare the
CPU and expansion in cross contrast way to find the problems.

Q17: Why the signal input but cannot see the high speed counter

working?

Al7:

If high-speed counting is to be carried out, in addition to connecting high-speed pulse to the
input of high-speed counting of PLC, the corresponding high-speed counting program should
be written with functional instructions. For details, please refer to the relevant content of
Chapter 5 of this manual.

Q18: C language advantages compared to ladder chart?

Al8:

(1) XG series PLC supports almost all C language functions. When it comes to complex
mathematical operations, the advantage of C language is more obvious.

(2) Enhance the confidentiality of the program (when using file-advanced storage mode, C
language can not upload).

(3) C language function block can be called in many places and different files, which greatly
improves the efficiency of programmers.

384

Q19: What’s the function of SW1 and SW2 of PLC

Al9:

Whether the PLC RS485 port communication is the terminal can be set by SW1 and SW2 of
XG1 series PLC. When the PLC is at the beginning or end of the bus, please turn the dial
switch to on.

SW1 of XG2 series PLC is used for PLC firmware updating, and SW2 and SW3 are used for
the corresponding RS485 port communication. Whether the PLC is a terminal? When the
PLC is at the beginning or end of the bus, please turn the dial switch to on.

Q20: What’s the difference of sequence function BLOCK trigger

condition: rising edge triggered and normally closed conduction?

A20:

Rising edge triggered: when the condition is triggered, block executes in order from top to
bottom; Normally closed conduction: when the condition is triggered, Block will execute in
order from top to bottom, return to the top and execute again until the normally closed
conduction breaks off. The cycle stops when the last one finished.

MO M800
— A SBLOCK | — SBLOCK |
— Instruction 1 — Instruction 1
— Instruction 2 | — Instruction 2 |
— Instruction 3 | — Instruction 3 |
- SBLOCKE v . SBLOCKE |
From up to down, run the instruction from up to down, cyclic run the instruction
one by one

Q21: What are the download modes of XG series PLC and what are

their characteristics?

A21:

XG series PLC has three download modes, which are:

Common download mode

In this mode, you can easily download the program from the computer to the PLC or upload
the program from the PLC to the computer. It will be very convenient to use this mode when
debugging the equipment.

Password Download Mode

385

You can set a password for the PLC. When you upload the program from the PLC to the
computer, you need to enter the correct password. In the advanced password option, you can
also check the function of "download the program needs to be decrypted first" (Note: This
operation is dangerous, if you forget the password, your PLC will be locked!). This download
mode is suitable for users when they need to keep the device program secret and they can call
out the device program at any time.

Secret download mode

In this mode, the program on the computer can be downloaded to the PLC, no matter what
way the user can upload the program in the PLC to the computer; at the same time, the user
program can be downloaded confidentially, which can occupy less internal resources of the
PLC, greatly increase the program capacity of the PLC, and can have a faster download speed;
after using this download mode, the program will be completely unable to recover.

Q22: What kinds of confidentiality methods do XG series PLCs have?

A22:

Xinje PLC has three methods of confidentiality: (1) importing and exporting downloaded files;
(2) secret downloading; (3) password downloading.

Import and export download files: After saving the PLC program in this way, users can
download and use the program, but they can not view and edit the program.

Secret download: After secret downloading to PLC, the program and data in PLC will not be
uploaded, indicating that "the program does not exist".

Password download: If you download the program that has set the password to the PLC, you
need to input the correct password when uploading the PLC program; if you check "download
program needs to be decrypted first”, you also need to input the correct password when
downloading the new program to the PLC. Under this mode, you can not modify the clock
information of the PLC, and the confidentiality is stronger.

Q23: PLC I/O terminal exchanging

A23:

Sometime the PLC 1/O terminals are broken. User don’t have to change the program, PLC 1/O
terminal exchanging function can solve the problem. User can exchange the terminal through
XINJE Touchwin HMI. Open Touchwin software, jump to screen no. 60004 (X terminals) or
screen no. 60005 (Y terminals) to set the 1/O exchanging.

386

PLCL - /O Set ==

=l PLC Cortfig Filter Time({ms): 10
----- [Password
""" ﬁ E:SC Serial Port In Port Map | Out Port Map | In Port Property
..... BD
..... oot CAN +0 +1 +2 +3 +4 +5 +8 +7
----- Save Hold Memo| | |) wp o 1 o 3 4 g g T
----- 000 Meodule
_____ H 140 Wi 10 11 12 15 14 15 16 1T
----- o M4 Module w20 20 21 22 23 24 25 26 27
----- M| Mot
J on wan 30 3 32 35 34 35 36 3T
w40 40 41 42 43 44 45 46 47
wa0 =] 51 52 53 54 55 56 57
=N} =] Bl gz B3 G4 BS B BT
wra Ta Tl T2 T3 T4 TS Ki=] T
Fi I 1
| Read From PLC | | Wite ToPLC | | 0K | [Cancel

XC PLC Input Status

001 2 3 4 5 & 7
5 0
10 11 12 13 14 15 16 17

20 21 22 023 M4 25 26 Output
Fort
30 31 32 33 34 35 36 37
O

40 41 42 43

= fport banned, With¥ [port| Eeplace

Touchwin HMI 1/0 terminal exchanging screen

Q24: What’s the function of XG series PLC indirect addressing?

A24:

Adding offset suffix after coils and data registers (Such as X3[D100], M10[D100], DO[D100])
can realize indirect addressing function; such as D100=9, X3[D100] represents X14,
M10[D100] represents M19, DO[D100] represents D9; It usually applies to large number of
bit and register operation and storage.

387

Q25: How does XG series PLC connect to the network?

A25:

XG series PLC can be connected to the network through its own LAN port (RJ45 standard
interface), or through G-BOX, W-BOX, S-BOX and other modules, and the above four
modules have their own communication characteristics. For details, please refer to the user
manual of each communication module.

Q26: How to add soft element andline note in XDppro software?

A26:

Soft element note

Open XDPpro software, and move the mouse to the corresponding soft element and right
click the mouse, then menu will pop out:

PLC1 - Ladder |
"""" MO |
o Tl
Madify Reg Comment
Show Mode Comment
x Cut
2 Copy
__T; Paste
& Search
Replace

Click “Modify reg comment” to add element notes in below window:

Edit Reg Comment @

MO - |

oK || Cancel

Line note
Line note starts from *;”. Double click the line, then input semicolonand the contents.
MO

1

ADD NOTE : |

388

| PLC1 - Ladder |

n0

o (T

ADD MNOTE

Q27: Do not have clock function?Why is the clock inaccurate?

A27:

XG series PLC all have built-in clock.

There is a certain error in the clock of XG series PLC, which is about 5 minutes per month.
Please calibrate it through the touch screen or directly in the PLC program.

389

Appendix Special soft components

Appendix mainly introduces the functions of XG series PLC special soft element, data
register, FlashROM and the address distribution of expansions for users to search.

Appendix 1 Special Auxiliary Relay

Initial Status(SM0-SM5)

ID Function Description
Coil ON when RUN SMO000 keeps ON
SMO00 running nput Ll L when PLC running
SMO
SMO001 Coil OFF when — I— I— SMO001 keeps OFF
running — when PLC running
SM1 |_
SM002 In|_t|al positive pulse SM2 ‘| ‘I SMO002 is ON in first
coil — scan cycle
SM003 Initial negative pulse SM3 J J SMO003 is OFF in first
coil A K—Scan cycle scan cycle
When SM4 sets ON, it indicates that there is an error
. in the operation of PLC.
SMO04 | PLC running error (Firmware version V3.4.5 and above supports this
function by PLC)
When the battery voltage is less than 2.5V, SM5 will
SMO005 | Battery low alarm coil | put ON (at this time, please replace the battery as soon
as possible, otherwise the data will not be maintained)
Clock(SM11-SM14)
ID Function Description
. Sms .
SMO011 | 10ms frequency cycle
5ms
. 50ms .
SM012 | 100ms frequency cycle
50ms
058 -
SMO013 | 1s frequency cycle
0.5s

390

30s
SMO014 | 1min frequency cycle
30s
Mark(SM20-SM22)
ID Function Description
SMO020 | Zero bit SMO020 is ON when plus/minus operation result is 0
SMO021 | Borrow bit SMO021 is ON when minus operation overflows
SM022 | Carry bit SM022 is ON when plus operation overflows
PC Mode(SM30~M34)
ID Function Description
SMO030 PLC initialize Factory reset
Retenti ot When SMO032 is ON, ON/OFF mapping memory of
SM032 reieetn Ve register HM. HS and current values of HT. HC. HD will be
reset.
SM033 | Clear user’s program Z:;I;ergdSM033 is ON, all PLC user’s program will be
SM034 | All output forbidden \Cl)vl?lgn SMO034 is ON, all PLC external contacts will be set
Stepping Ladder
ID Function Description
SMO040 | The process is running Set ON when the process is running

391

Interruption ban(SM50-SM90)

ID Address Function Description
SMO050 | 10000/10001 | Forbid input interruption 0 . . .
— - - After executing EI instruction,
SMO051 | 10100/10101 Forb!d !nput !nterrupt!on 1 the input interruption couldn’t
SMO052 | 10200/10201 | Forbid input interruption 2 act independently when M
SMO053 | 10300/10301 | Forbid input interruption 3 acts, even ifﬁhe indterruption is
SM054 id input int tion 4 allowed. .
10400/10401 | Forbid input interruption E.g.: when SMO50 s
""""""""" ON,10000/10001 is forbidden.
SMO069 | 11900/11901 | Forbid input interruption 19
SMO70 | 140** Forbid timing interruption 0
SMO71 | 141** Forbid timing interruption 1 After executing El instruction,
= i the timing interruption
SMO72 | 142** Forbid timing interruption 2 couldn’t act independently
SMO73 | 143** Forbid timing interruption 3 when M acts, even if the
SMO074 | 144** Forbid timing interruption 4 interruption is allowed.
SMO089 | 159** Forbid timing interruption 19
SM090 Forbid all interruptions Forbid all interruptions
High Speed Ring Counter(SM99)
address Function Note
SM99 set ON, SD99 add
SMO099 High Speed Ring Counting enable one per 0.1ms, cycle
between0 and 32767
High speed count complete(SM100-SM109)
Address Function Note
SM100 HSCO count complete flag(100 segments)
SM101 HSC2 count complete flag(100 segments)
SM102 HSC4 count complete flag(100 segments)
SM103 HSC6 count complete flag(100 segments)
SM104 HSC8 count complete flag(100 segments)
SM105 HSC10 count complete flag(100 segments)
SM106 HSC12 count complete flag(100 segments)
SM107 HSC14 count complete flag(100 segments)
SM108 HSC16 count complete flag(100 segments)
SM109 HSC18 count complete flag(100 segments)

392

High speed counter direction(SM110-SM119)

Address Function Note
SM110 HSCO direction flag
SM111 HSC2 direction flag
SM112 HSC4 direction flag
SM113 HSC6 direction flag
SM114 HSCS8 direction flag
SM115 HSC10 direction flag
SM116 HSC12 direction flag
SM117 HSC14 direction flag
SM118 HSC16 direction flag
SM119 HSC18 direction flag

High speed counter error(SM120-SM129)

address Function Note
SM120 HSCO error flag
SM121 HSC2 error flag
SM122 HSCA4 error flag
SM123 HSC6 error flag
SM124 HSCS error flag
SM125 HSC10 error flag
SM126 HSC12 error flag
SM127 HSC14 error flag
SM128 HSC16 error flag
SM129 HSC18 error flag

High peed counter overflow flag (SM130~SM139)

address Function Note
SM130 HSCO overflow flag
SM131 HSC2 overflow flag
SM132 HSC4 overflow flag
SM133 HSC6 overflow flag
SM134 HSC8 overflow flag
SM135 HSC10 overflow flag
SM136 HSC12 overflow flag
SM137 HSC14 overflow flag
SM138 HSC16 overflow flag
SM139 HSC18 overflow flag

393

Communication(SM140-SM193)

Address Function Note
Serial | SM140 Modbus instruction execution When the instruction starts to
port 0 flag execute, set ON
When execution is complete, set
OFF
SM141 X-NET instruction execution When the instruction starts to
flag execute, set ON
When execution is complete, set
OFF
SM142 Free format communication When the instruction starts to
sending flag execute, set ON
When execution is complete, set
OFF
SM143 Free format communication When receiving a frame of data
receive complete flag or receiving data timeout, set
ON.
Require user program to set OFF
Serial | SM150 Modbus instruction execution Same to SM140
port 1 flag
SM151 X-NET instruction execution Same to SM141
flag
SM152 Free format communication Same to SM142
sending flag
SM153 Free format communication Same to SM143
receive complete flag
SM160 Modbus instruction execution Same to SM140
Serial flag
port2 | SM161 X-NET instruction execution Same to SM141
flag
SM162 Free format communication Same to SM142
sending flag
SM163 Free format communication Same to SM143
receive complete flag
Serial | SM170 Modbus instruction execution Same to SM140
port 3 flag
SM171 X-NET instruction execution Same to SM141
flag
SM172 Free format communication Same to SM142
sending flag
SM173 Free format communication Same to SM143
receive complete flag
Serial | SM180 Modbus instruction execution Same to SM140
port 4 flag
SM181 X-NET instruction execution Same to SM141
flag
SM182 Free format communication Same to SM142
sending flag
SM183 Free format communication Same to SM143
receive complete flag
Serial | SM190 Modbus instruction execution Same to SM140
port 5 flag

394

SM191 X-NET instruction execution Same to SM141
flag

SM192 Free format communication Same to SM142
sending flag

SM193 Free format communication Same to SM143
receive complete flag

Sequence Function BLOCK(SM300-SM399)

ID Function Description
SM300 | BLOCKZI running flag SM300 will be ON when block1 is running
SM301 | BLOCK?2 running flag SM301 will be ON when block2 is running
SM302 | BLOCKS running flag SM302 will be ON when block3 is running
SM303 | BLOCKA4 running flag SM303 will be ON when block4 is running
SM304 | BLOCKS5 running flag SM304 will be ON when block5 is running
SM305 | BLOCKG® running flag SM305 will be ON when block6 is running
SM396 | BLOCK97 running flag SM396 will be ON when block97is running
SM397 | BLOCK98 running flag SM397 will be ON when block98 is running
SM398 | BLOCK99 running flag SM398 will be ON when block99 is running
SM399 will be ON when block100 is
SM399 | BLOCKZ100 running flag running
Error check(SM400-SM415)
ID Function Description
ERR LED keeps ON, PLC don not run and output,
SM400 | I/O error check when power on
Expansion module
SM401 | communication error
SM402 | BD communication error
SMA405 | No user program Internal code check wrong
SM406 | User program error Implement code or configuration table check wrong
ERR LED keeps ON, PLC don not run and output,
SM407 | SSFD check error check when power on
SM408 | Memory error Can not erase or write Flash
SM409 | Calculation error
SM410 | Offset overflow Offset exceeds soft element range
SM411 | FOR-NEXT overflow Reset when power on or users can also reset by hand.
When offset of register overflows, the return value
SMA412 | Invalid data fill will be SM372 value
SMA413 | Encrypted checksum error
SMA414 | FLASH data error
RTC real time clock error
SM415 | flag bit RTC time and date verification failed

395

Error Message(SM450-SM465)

Function Description

SMA450 | System error check

SM451 | Hardfault interrupt flag

SM453 SD card error

SM454 | Power supply is cut off

SMA455 | Power down keeps data error

SM456 | Online download error flag bit

SM460 Extension module ID not match

SM461 BD/ED module ID not match

SM462 Extension module communication overtime

SM463 BD/ED module communication overtime

SM464 | The expansion module communication data overflow

SM465 The BD/ED module communication data overflow

Expansion Modules, BD Status(SM500)

ID Function Description
SM500 | Module status read is finished
Appendix 2 Special Data Register
Battery (SD5~SD7)
ID Function Description

SD005 Battery register

It will display 100 when the battery voltage is 3V,
if the battery voltaeg is lower than 2.5V, it will
display 0, it means please change new battery at
once, otherwise the data will lose when PLC
power off.

Clock (SD10-SD019)

ID Function

Description

SD010 Current scan cycle

100us, us is the unit

SD011 Min scan time

100us, us is the unit

SD012 Max scan time

100us, us is the unit

SD013 Second (clock)

0~59 (BCD code)

SD014 Minute (clock)

0~59 (BCD code)

SD015 Hour (clock)

0~23 (BCD code)

SD016 Day (clock)

1~31 (BCD code)

396

SD017 Month (clock) 1~12 (BCD code)

SD018 Year (clock) 2000~2099 (BCD code)

SD019 Week (clock) 0(Sunday)~6(Saturday)(BCD code)

Flag (SD020-SD031)

ID Function Note

SD020 | Model type

SD021 | model(low-8)series(high-8)

SD022 | Compatiable system version(low)system version(high)

SD023 | Compatiable model version(low)model version(high)

SD024 | Model info

SD025 | Model info

SD026 | Model info

SD027 | Model info

SD028 | Suitable software version

SD029 | Suitable software version

SD030 | Suitable software version

SD031 | Suitable software version

Step ladder(SD040)

ID Function Description

SD40 | Flag of the executing process S

Step ladder(SD099)

ID Function Description
High speed ring counter When SM99 is set to on, SD99
SD99 adds 1 every 0.1ms, and
circulates between 0 and 32767.

High Speed Counting(SD100-SD109)

ID Function Description
SD100 | Current segment (No. n segment) HSCO00
SD101 | Current segment (No. n segment) HSCO02
SD102 | Current segment (No. n segment) HSC04
SD103 | Current segment (No. n segment) HSC06
SD104 | Current segment (No. n segment) HSCO08
SD105 | Current segment (No. n segment) HSC10
SD106 | Current segment (No. n segment) HSC12
SD107 | Current segment (No. n segment) HSC14

397

SD108 | Current segment (No. n segment) HSC16
SD109 | Current segment (No. n segment) HSC18
High speed counter error(SD120-SD129)
ID Function Note
SD120 HSCO error info
SD121 HSC2 error info
SD122 HSC4 error info
SD123 HSCS6 error info
SD124 HSCS8 error info
SD125 HSC10 error info
SD126 HSC12 error info
SD127 HSC14 error info
SD128 HSC16 error info
SD129 HSC18 error info
Communication (SD140~SD199)
ID Function Note
SD150 Modbus read write 0: correct
instruction execution 100: receive error
result 101: receive overtime
180: CRC error
181: LRC error
182: station error
183: send buffer overflow
400: function code error
401: address error
402: length error
Serial 403: data error
port 1 404: slave station busy
405: memory error(eraseFLASH)
SD151 X-Net communication 0: correct
result 1: communication overtime
2: memory error
3: receive CRC error
SD152 Free format 0: correct
communication send 410: free format send buffer
result overflow
SD153 Free format 0: correct
communication receive | 410: send data length overflow
result 411: receive data short
412: receive data long
413: receive error
414: receive overtime
415: no start character
416: no end character

SD154 Free format In bytes, there are no start and stop
communication receive characters
data numbers

SD159
SD160 Modbus read write 0: correct
instruction execution 100: receive error
result 101: receive overtime
180: CRC error
181: LRC error
Serial 182: station error
port 2 183: send buffer overflow
400: function code error
401: address error
402: length error
403: data error
404: slave station busy
405: memory error(eraseFLASH)
SD161 X-Net communication 0: correct
result 1: communication overtime
2: memory error
3: receive CRC error
SD162 Free format 0: correct
communication send 410: free format send buffer
result overflow
SD163 Free format 0: correct
communication receive | 410: send data length overflow
result 411: receive data short

412: receive data long

413: receive error

414: receive overtime

415: no start character

416: no end character

SD164 Free format In bytes, there are no start and stop
communication receive characters

data numbers

SD169

Serial | SD170~SD179

port 3

Serial | SD180~SD189

port 4

Serial | SD190~SD199

port 5

Sequence Function Block (SD300-SD399)

ID Function Description

SD300 | Executing instruction of BLOCK1 | The value will be used when BLOCK monitors

SD301 | Executing instruction of BLOCK2 | The value will be used when BLOCK monitors

SD302 | Executing instruction of BLOCK3 | The value will be used when BLOCK monitors

399

SD303 | Executing instruction of BLOCK4 | The value will be used when BLOCK monitors
SD304 | Executing instruction of BLOCK5 | The value will be used when BLOCK monitors
SD305 | Executing instruction of BLOCK6 | The value will be used when BLOCK monitors
Executing instruction of
SD396 | BLOCK97 The value will be used when BLOCK monitors
Executing instruction of
SD397 | BLOCK98 The value will be used when BLOCK monitors
Executing instruction of
SD398 | BLOCK99 The value will be used when BLOCK monitors
Executing instruction of
SD399 | BLOCK100 The value will be used when BLOCK monitors
Error Check (SD400-SD413)
ID Function Note
SD400
Extension module no. of
SD401 | communication error Means module no.n is error
BD/ED module no. of
SD402 | communication error
SD403 | FROM/TO error type
SD404 | PID error type
SD405 | No user program
SD406 | User program error type
SD407 | SSDF error type
SD408 | Erasure flash error type
SD409 | Calculation error code 1: divide by 0 error
2: MRST, MSET front operand address less
than back operand
3: ENCO, DECO data bits of encoding and
decoding instructions exceed the limit.
4: BDC code error
7: Radical sign error
SD410 | The number of offset register
D when offset crosses the
boundary
SD411
Invalid data fill value (low16
SD412 | bits)
Invalid data fill value (highl6
SD413 | bits)
SD414 | Flash register data error type
SD415 | RTC real time clock error type | 1: The RTC power supply has a low voltage
condition and needs to be rewritten
2: RTC writes data, and the clock chip does
not respond to the ACK signal
3: Write illegal time date data

400

Error Check (SD450-SD465)

ID Function Description
SD450 1: Watchdog act (Default 200ms)
2: Control block application fail
3: Visitillegal address
SD451 Hardware error type:
1: Register error
2: Buserror
3: Usage error
SD452 Hardware error
SD453 SD card error
SD454 Power-off time
SD455
SD456
SD460 Extension module ID not match
SD461 BD/ED module ID not match
SD462 Extension module communication overtime
SD463 BD/ED module communication overtime
SD464 Communication data overflow of expansion
module number
SD465 BD/ED module number communication data
overflow
Expansion Modules, BD Status(SD500-SD516)
1D Function Description
Module number
Expansion modules:
SD500 #10000~10015
BD: #20000~20001
ED: #30000
Expansion module, BD /ED
SD501~516 | status 16 registers
Module info(SD520-SD823)
ID Function Explanation Note
SD520~SD535 | Extension module info Extension module 1 Each
SD760~SD775 | Extension module info Extension module 16 (ra;(;gzslg,)r;BD,
SD776~SD791 | BD module info BD module 1 ED occupies
SD792~5D807 | BD module info BD module 2 16 registers
SD808~SD823 | ED module info ED module 1

401

Expansion Module Error Information

ID Function Description
SD860 | Error times of module read
Module address error.
Module accepted data length error.
SD861 | Error types of module read Module QRC parity error when PLC
is accepting data. £ .
Module 1D error. xparllsmn
Module overtime error. module 1
SD862 Err_or times of module
write
SD863 Err_or types of module
write
SD864 | Error times of module read
Module address error.
Module accepted data length error.
SD865 | Error types of module read !\/Iodule C_:RC parity error when PLC
is accepting data. Expansion
Module ID error. mo%ule 5
Module overtime error.
SD866 Err_or times of module
write
SD867 Error types of module
write
SD920 | Error times of module read
Module address error.
Module accepted data length error.
SD921 | Error types of module read !\/Iodule C.:RC parity error when PLC
is accepting data. Expansion
Module ID error. moF:que 16
Module overtime error.
SD922 Err_or times of module
write
SD923 Err_or types of module
write
SD924 | Error times of module read
SD925 | Error types of module read
Error times of module BD
5D926 write module 1
SD927 Error types of module
write
SD928 | Error times of module read
SD929 | Error types of module read BD
SD930 Error times of module module 2

write

402

SpD931 Err_or types of module
write
SD932 | Error times of module read
SD933 | Error types of module read
SD934 Err_or times of module ED module
write 1
SD935 Err_or types of module
write
Version info(SD990~SD993)
ID Function Explanation Note
SD990 Firmware version date | Low 16-bit
spggy | Firmware version High 16-bit
compilation date
SDggp | [PGA version Low 16-bit
compilation date
spggg | FPGA version High 16-bit
compilation date
Special function(HSD50~HSD55)
ID Function Description
HSD50 Keep data write t.)aCk :llme Single word,unit:1ms
after power failure”
HSD51 Power failure detection CPU WOT"'”Q tlr_n_e after power
failure,unit:100us
Last PLC operation
HSDS2 time(low16 bits) N
- Double word,unit:1s
HSD53 La_lst PL_C opera_tlon
time(high16 bits)
HSD54 Current PLC ope_ratlon time
(low16 bits) Double word,unit:1s
Current PLC operation time R
HSD55 (high16 bits)
Error record(HSD80~HSD179)
ID Function
HSD79 Error list index value
HSD80~HSD84 Acrticle 1 error message
HSD85~HSD89 Aurticle 2 error message
HSD90~HSD94 Article 3 error message

403

HSD95~HSD99

Acrticle 4 error message

HSD100~HSD104

Article 5 error message

HSD105~HSD109

Acrticle 6 error message

HSD110~HSD114

Article 7 error message

HSD115~HSD119

Article 8 error message

HSD120~HD124

Acrticle 9 error message

HSD125~HSD129

Avrticle 10 error message

HSD130~HD134

Avrticle 11 error message

HSD135~HSD139

Acrticle 12 error message

HSD140~HD144

Avrticle 13 error message

HSD145~HSD149

Acrticle 14 error message

HSD150~HD154

Acrticle 15 error message

HSD155~HSD159

Avrticle 16 error message

HSD160~HSD164

Acrticle 17 error message

HSD165~HSD169

Acrticle 18 error message

HSD170~HSD174

Acrticle 19 error message

HSD175~HSD179

Acrticle 20 error message

Notes:

Firmware version v3.5.3/v3.3 can support this function.

Appendix 3 Special Flash Register

Special FLASH data register SFD

* means it works only after repower on the PLC

| filtering
ID Function Description
SFDO* Input filter time, default value is 10ms
SFD2* | Watchdog run-up time, default value is 200ms
Special function configuration
ID Function Description
SFD3* Bit0:Power down memory register exception

Special function configuration

(default:0x0000)

handling.

0: the system clears it;

1: No processing.

Bitl: Execute user program in external
interrupt subroutine.

0: execute in task;

1: Execute in interrupt (in this mode, the user
interrupt subroutine cannot contain C
language function block). This mode is
generally used in occasions that require high

404

priority.
0: not raise;

real-time performance of external signals.
Bit2: whether to raise the external interrupt

1: raise (raise to the highest).

Note: firmware version v3.5.3/v3.3y and up can support.

Testing mode configuration
ID Function Description
Testing mode It is generally used for problem diagnosis in case of PLC crash.
configuration BitO: testing mode enable 0: not enable 1: enable (ERR light
(default value will keep flashing).
SFD4* 0x0000) Bitl: ERR light flashing status 0: 1ms task flashing (1Hz), 1:

100us interrupt flashing (10Hz).
Bit2: Increase 100us interrupt priority. O: not increase 1:
increase (increase to the max level).

Note: firmware version v3.5.3/v3.3y and up can support.

I Mapping
ID Function Description
Input terminal 0 OxFF means terminal
SFD10* | 100 corresponds to X** bad, OXFE means

corresponds to X** number

terminal idle
SFD11* | 101 corresponds to X**
SFD12* | 102 corresponds to X**
SFD73* | 177 corresponds to X** | Default value is
77(0ctonary)
O Mapping
ID Function Description
000 corresponds to Output terminal 0 correspond | OXFF means terminal
SFD74* - P to Y** number, Default value | bad, OxFE means
is0 terminal idle
fFD137 811 corresponds to Default value is 77(Octonary)
| Attribute
1D Function Description
0: positive logic
SFD138* | 100 attribute Attribute of input terminal O others: negative
logic
SFD139* | 101 attribute

405

| SFD201* | 177 attribute |

High Speed Counting

1D Function Description
. . 0: rising edge count,
SFD310 eH dsg(é(():gm‘?éig:ia;ﬁ counting 1: Falling edge count,
2: Both rising and falling edges are counted
. . 0: rising edge count,
SFD311 eH dsggiosr:?igfrgtri]grswe counting 1: Falling edge count,
2: Both rising and falling edges are counted
. . 0: rising edge count,
SFD312 eH dsggdtf:osr:?igfrgtri]grswe counting 1: Falling edge count,
2: Both rising and falling edges are counted
. . 0: rising edge count,
SFD313 eH ng%GCOSr:?igljrst?gie counting 1: Falling edge count,
2: Both rising and falling edges are counted
2: 2 times frequency;
SFD320 | HSCO frequency times 4: 4 times frequency(effective at AB phase
counting mode)
SFD321 | HSC2 frequency times Ditto
SFD322 | HSC4 frequency times Ditto
SFD323 | HSC6 frequency times Ditto
SFD324 | HSC8 frequency times Ditto
SFD325 | HSC10 frequency times Ditto
SFD326 | HSC12 frequency times Ditto
SFD327 | HSC14 frequency times Ditto
SFD328 | HSC16 frequency times Ditto
SFD329 | HSC18 frequency times Ditto
Bit selection of HSC bit0 corresponds to HSCO, bitlcorresponds to
SFD330 | absolute and relative(24 HSCZI, _and so on, hit9 corresponds to HSC18
segment) 0: relative
1: absolute
Interrupt circulating of 24 bit0 corresponds to HSCO, bitlcorresponds to
SFD331 | segments high speed OHSEIZn Iand so on, hit9 corresponds to HSC18
counting ’ gle
1: loop
bit0 corresponds to HSCO, bitlcorresponds to
SFD332 | CAM function HSC2, and so on, bit9 corresponds to HSC18

0: do not support CAM function
1: support CAM function

Expansion Module Configuration

ID Function Explanation

SED340 Extension module configuration Configuration Status of Extension
status(#1#2) Modules 1 and 2

SED341 Extension module configuration Configuration Status of Extension
status(#3#4) Modules 3 and 4

SED347 Extension module configuration Configuration Status of Extension
status(#15#16) Modules 15 and 16

406

Configuration Status of BD Modules

SFD348 | BD module configuration status(#1#2) 1L and 2
SFD349 | ED module configuration status(#1) Configuration Status of ED Module 1
SFD350 | Extension module configuration
Configuration of Extension Module 1

SFD359
SFD360 | Extension module configuration

: Configuration of Extension Module 2
SFD369
SFD500

: . . . Configuration of Extension Module

Extension module configuration 16

SFD509
SFD510

: BD module configuration Configuration of BD Module 1
SFD519
SFD520

: BD module configuration Configuration of BD Module 2
SFD529
SFD530

: ED module configuration Configuration of ED Module 1
SFD539

Communication

ID Function Note

SED600 CoM1 free format communication 0: 8-bit 1: 16-bit
buffer bit numbers

SED610 COM2 f_ree format communication 0: 8-bit 1: 16-bit
buffer bit numbers

SED620 COM3 free format communication 0: 8-bit 1: 16-bit
buffer bit numbers

SEDe3g | COM4 free format communication 0: 8-bit 1: 16-bit
buffer bit numbers

SED640 COM5 free format communication 0: 8-bit 1: 16-bit

buffer bit numbers

407

Appendix 4 PLC resource conflict table

When PLC is used in practice, conflicts may arise because some resources are used at the
same time. This section will list the resources that may cause conflicts in each PLC model.
This part mainly refers to high-speed counting, accurate timing and pulse output.

Precise timing | High speed counter | Pulse output
XG1-16T4

ETO
ET2 HSC6
ET4 HSC4
ET6 HSCO
ET8 HSC2
ET10 Y3
ET12 Y3
ET14 Y2
ET16 Y2
ET18 Y1
ET20 Y1
ET22 YO0
ET24 YO0

»1: This form should be read horizontally. Any two resources in each row cannot be used at the same time.
Otherwise, it will cause conflict.
$2: XG2 series PLC doesn’t have this table.

Appendix 5 PLC function configuration list

This part is used to check each model’s configurations. Via this table, we can judge products
type easily.
o Selectable x Not support Support

Free Expansion et Pulse output External
Model USB | RS232 | RS485 format Ethernet | EtherCAT el incrteI ﬁB (T/RT) interruption
menta phase
XG1 series
XG1-16T4 ‘ N ‘ = ‘ N ‘ N \ N ‘ x ‘ 16 ‘ 4 ‘ 4 ’ 4 6
XG2 series
XG2-26T4 \ x \ N \ N \ N \ N \ N \ 16 \ 4 \ 4 \ 4 12

Note: all the models have clock function.

408

No.816, Jianzhu West Road, Binhu District, Wuxi City, Jiangsu
Province, China

Tel: 400-885-0136

Fax: 86-510-85111290

Email: fiona.xinje@vip.163.com

Www.xinje.com

Wechat ID

409

